Cho ΔABC có A=40;B=100. từ B kẻ đường thẳng vuông góc AC tại H.
a. Tính C
b.cm BH là tia pg của ∠ABC
c. Trên nửa mp ko chứa điểm B và có bờ là đường thẳng AC, vẽ các tia Ax và Cy cùng song song vs BH. Tính ∠xAB+∠ABC+∠BCy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC/sinA=2R
=>2R=3/sin40
=>\(R\simeq2,33\left(cm\right)\)
b: góc B=180-40-60=80 độ
\(\dfrac{AC}{sinB}=\dfrac{BC}{sinA}=\dfrac{AB}{sinC}\)
=>AC/sin80=3/sin40=AB/sin60
=>\(AC\simeq5\left(cm\right)\) và \(AB\simeq4,04\left(cm\right)\)
c: \(AM=\sqrt{\dfrac{AB^2+AC^2}{2}-\dfrac{BC^2}{4}}=\sqrt{\dfrac{5^2+4,04^2}{2}-\dfrac{3^2}{4}}\simeq4,29\left(cm\right)\)
1.
\(a,\sin\widehat{B}=\sin60^0=\dfrac{AC}{BC}=\dfrac{\sqrt{3}}{2}\Leftrightarrow AC=\dfrac{12\sqrt{3}}{2}=6\sqrt{3}\left(cm\right)\\ b,AC^2=CH\cdot BC\left(HTL.\Delta\right)\\ \Rightarrow CH=\dfrac{AC^2}{BC}=9\left(cm\right)\)
Tim Gia Tri Nho Nhat Cua
a) A = x - 4 can x + 9
b) B = x - 3 can x - 10
c ) C = x - can x + 1
d ) D = x + can x + 2
Do tam giác ABC là tam giác cân nên AH là đường cao đồng thời là đường trung tuyến nên:
\(BH=CH=\dfrac{BC}{2}=\dfrac{5}{2}=2,5\left(cm\right)\)
Xét tam giác vuông ABH ta có:
\(sinB=\dfrac{BH}{AB}\)
\(\Rightarrow sin40^{o0}=\dfrac{2,5}{AB}\Rightarrow AB=\dfrac{2,5}{sin40^o}\approx4\left(cm\right)\)
Áp dụng định lý Py-ta-go vào tam giác đó ta có:
\(AB^2=BH^2+AH^2\)
\(\Rightarrow AH=\sqrt{AB^2-BH^2}=\sqrt{4^2-2,5^2}\approx3\left(cm\right)\)
vì tam giác ABC cân tại A
=> góc B = góc C = 40 độ
=> góc A=180 độ - 40 độ - 40 độ =100 độ
k nha
Vì \(\Delta\)ABC cân tại A nên ta có : \(\widehat{B}=\widehat{C}=40^0\)
=> \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
=>\(\widehat{A}=180^0-\left(\widehat{B}+\widehat{C}\right)\)
\(=180^0-80^0\)
\(=100^0\)
Vậy \(\widehat{A}=100^0\)
Ta có hình vẽ:
Xét tam giác ABM và tam giác ACM có:
AB = AC (GT)
góc ABM = góc ACM (vì AB = AC => tam giác ABC cân)
BM = MC (GT)
=> tam giác ABM = tam giác ACM (c.g.c)
=> \(\widehat{AMB}\)=\(\widehat{AMC}\)(2 góc tương ứng)
Mà \(\widehat{AMB}\)+\(\widehat{AMC}\)=1800 (kề bù)
=> \(\widehat{AMB}\)=\(\widehat{AMC}\)=\(\frac{1}{2}\)1800 = 900
Vậy \(\widehat{AMB}\)=900 ; \(\widehat{AMC}\)=900
1) Mình làm rồi nhé:
https://hoc24.vn/cau-hoi/cho-dabc-can-tai-a-co-bc-5cm-b-c-40-tinh-ab-va-duong-cao-ah.8311486416239
2) Xét tam giác vuông ABH ta có:
\(cosB=\dfrac{AH}{AB}\)
\(\Rightarrow cos60^o=\dfrac{5}{AB}\Rightarrow AB=\dfrac{5}{cos60^o}=10\)
Áp dụng định lý Py-ta-go vào tam giác này ta có:
\(AB^2=AH^2+BH^2\)
\(\Rightarrow BH=\sqrt{AB^2-AH^2}=\sqrt{10^2-5^2}=5\sqrt{3}\)
Mà: \(BH+CH=BC\)
\(\Rightarrow CH=BC-BH=10-5\sqrt{3}\approx1,3\)
Áp dụng định lý Py-ta-go ta có:
\(AC=\sqrt{CH^2+AH^2}=\sqrt{1,3^2+5^2}\approx5,2\)