1,so sánh A và B biết:A=\(\dfrac{2010}{2011}+\dfrac{2011}{2012}+\dfrac{2012}{2010};B=\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{17}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=\dfrac{2010+2011+2012}{2011+2012+2013}=\dfrac{2010}{2011+2012+2013}+\dfrac{2011}{2011+2012+2013}+\dfrac{2012}{2011+2012+2013}\)
Ta có: \(\dfrac{2010}{2011+2012+2013}< \dfrac{2010}{2011}\)
\(\dfrac{2011}{2011+2012+2013}< \dfrac{2011}{2012}\)
\(\dfrac{2012}{2011< 2012< 2013}< \dfrac{2012}{2013}\)
\(\Rightarrow\dfrac{2010}{2011+2012+2013}+\dfrac{2011}{2011+2012+2013}+\dfrac{2012}{2011+2012+2013}\)
\(\dfrac{2010}{2011}+\dfrac{2011}{2012}+\dfrac{2012}{2013}\)
\(P>Q\)
Ta có:
\(A=\dfrac{2010}{2011}+\dfrac{2011}{2012}\)
\(B=\dfrac{2010+2011}{2011+2012}\)
\(=\dfrac{2010}{2011+2012}+\dfrac{2011}{2011+2012}\)
Áp dụng tính chất \(\dfrac{a}{b}>\dfrac{a}{b+m}\) ta có:
\(\left\{{}\begin{matrix}\dfrac{2010}{2011}>\dfrac{2010}{2011+2012}\\\dfrac{2011}{2012}>\dfrac{2011}{2011+2012}\end{matrix}\right.\)
\(\Rightarrow\dfrac{2010}{2011}+\dfrac{2011}{2012}>\dfrac{2010}{2011+2012}+\dfrac{2011}{2011+2012}\)
Hay \(\dfrac{2010}{2011}+\dfrac{2011}{2012}>\dfrac{2010+2011}{2011+2012}\)
Vậy \(A>B\)
\(Q=\dfrac{2010+2011+2012}{2011+2012+2013}=\dfrac{2010}{2011+2012+2013}+\dfrac{2011}{2011+2012+2013}+\dfrac{2012}{2011+2012+2013}\)Ta thấy:
\(\dfrac{2010}{2011}>\dfrac{2010}{2011+2012+2013}\\ \dfrac{2011}{2012}>\dfrac{2011}{2011+2012+2013}\\ \dfrac{2012}{2013}>\dfrac{2012}{2011+2012+2013}\\ \Rightarrow\dfrac{2010}{2011}+\dfrac{2011}{2012}+\dfrac{2012}{2013}>\dfrac{2010}{2011+2012+2013}+\dfrac{2011}{2011+2012+2013}+\dfrac{2012}{2011+2012+2013}\\ \Leftrightarrow P>Q\)
Vậy \(P>Q\)
\(2010A=\dfrac{2010^{2012}+2010}{2010^{2012}+1}=1+\dfrac{2009}{2010^{2012}+1}\)
\(2010B=\dfrac{2010^{2011}+2010}{2010^{2011}+1}=1+\dfrac{2009}{2010^{2011}+1}\)
mà \(2010^{2012}+1>2010^{2011}+1\)
nên A<B
2.A=\(\dfrac{43.11}{2011^{2013}}\)+\(\dfrac{79}{2011^{2013}}\)=\(\dfrac{43.11+79}{2011^{2013}}\)
B=\(\dfrac{79.11}{2011^{2013}}\)+\(\dfrac{43}{2011^{2013}}\)=\(\dfrac{79.11+43}{2011^{2013}}\)
Ta có: 43.11+79=43.(10+1)+79=43.10+43+79=430+122
79.11+43=79.(10+1)+43=79.10+79+43=790+122
Vì 430+122<790+122 nên 43.11+79<79.11+43 (1)
Mà 20112013<20112013 (2)
Từ (1) và (2) suy ra A<B
3. A=\(\dfrac{2010.2012}{2011.2011}\)
Vì B<1 nên B>\(\dfrac{2010}{2012}\)=\(\dfrac{2010.2012}{2012.2012}\)
Vì 2010.2012=2010.2012; 2011.2011<2012.2012 nên B>A
4. A=\(\dfrac{3n}{3\left(2n+1\right)}\)=\(\dfrac{3n}{6n+3}\)
Vì 6n+3=6n+3; 3n<3n+1 nên A<B