Cho Δ ABC vuông tại A, đường cao AH. Vẽ đường tròn (A;AH). Từ B,C kẻ các tiếp tuyến BD, CE với đường tròn (A), trong đó D,E là các tiếp điểm.
a) Chứng minh: A,D,E thẳng hàng
b) BD.CE = \(\dfrac{DE^2}{4}\)
c) Gọi M là trung điểm của CH. Đường tròn (M), đường kính CH cắt đường tròn (A) tại N (N≠H). Chứng minh: CN song song AM
a) Ta có: \(\widehat{BAH}+\widehat{CAH}=\widehat{BAC}\)(tia AH nằm giữa hai tia AB,AC)
nên \(\widehat{BAH}+\widehat{CAH}=90^0\)
Xét (A) có
CE là tiếp tuyến có E là tiếp điểm(gt)
CH là tiếp tuyến có H là tiếp điểm(AH⊥CH tại H)
Do đó: AC là tia phân giác của \(\widehat{EAH}\)(Tính chất hai tiếp tuyến cắt nhau)
⇒\(\widehat{EAH}=2\cdot\widehat{HAC}\)
Xét (A) có
BH là tiếp tuyến có H là tiếp điểm(BH⊥AH tại H)
BD là tiếp tuyến có D là tiếp điểm(gt)
Do đó: AB là tia phân giác của \(\widehat{HAD}\)(Tính chất hai tiếp tuyến cắt nhau)
⇒\(\widehat{DAH}=2\cdot\widehat{HAB}\)
Ta có: \(\widehat{EAD}=\widehat{EAH}+\widehat{DAH}\)(tia AH nằm giữa hai tia AE,AD)
mà \(\widehat{EAH}=2\cdot\widehat{HAC}\)(cmt)
và \(\widehat{DAH}=2\cdot\widehat{HAB}\)(cmt)
nên \(\widehat{EAD}=2\cdot\widehat{HAC}+2\cdot\widehat{HAB}\)
\(\Leftrightarrow\widehat{EAD}=2\cdot\left(\widehat{HAC}+\widehat{HAB}\right)\)
\(\Leftrightarrow\widehat{EAD}=2\cdot90^0=180^0\)
hay A,D,E thẳng hàng(đpcm)
b) Xét (A) có
CE là tiếp tuyến có E là tiếp điểm(gt)
CH là tiếp tuyến có H là tiếp điểm(AH⊥CH tại H)
Do đó: CE=CH(Tính chất hai tiếp tuyến cắt nhau)
Xét (A) có
BH là tiếp tuyến có H là tiếp điểm(BH⊥AH tại H)
BD là tiếp tuyến có D là tiếp điểm(gt)
Do đó: BH=BD(Tính chất hai tiếp tuyến cắt nhau)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HC\cdot HB\)
hay \(AH^2=BD\cdot CE\)(1)
Ta có: AH=AE(=R)
mà AH=AD(=R)
nên AE=AD
mà E,A,D thẳng hàng(cmt)
nên A là trung điểm của ED
\(\Leftrightarrow EA=\dfrac{ED}{2}\)
\(\Leftrightarrow AH=\dfrac{ED}{2}\)
hay \(AH^2=\dfrac{DE^2}{4}\)(2)
Từ (1) và (2) suy ra \(BD\cdot CE=\dfrac{DE^2}{4}\)(đpcm)
c) Xét (M) có
ΔCNH nội tiếp đường tròn(C,N,H∈(M))
CH là đường kính
Do đó: ΔCNH vuông tại N(Định lí)
⇒CN⊥NH(3)
Vì (M) cắt (A) tại N và H
nên MA là đường trung trực của NH(Vị trí tương đối của hai đường tròn)
hay MA⊥NH(4)
Từ (3) và (4) suy ra CN//AM(Định lí 1 từ vuông góc tới song song)