Từ 1 điểm A nằm ngoài (O;R) vẽ 2 tiếp tuyến AB;AC với O (B,C là các tiếp điểm).Gọi H là chân đường vuông góc kẻ từ B xuống đường kính CD của (O).CMR: IB = IH, biết I là giao điểm của AD,BH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABM và ΔANB có
góc ABM=góc ANB
góc BAM chung
=>ΔABM đồng dạng với ΔANB
=>AB/AN=AM/AB
=>AB^2=AN*AM
Do \(OB=OE=R\Rightarrow\Delta OBE\) cân tại O
Mà \(OH\perp BE\) (giả thiết) \(\Rightarrow OH\) là đường cao đồng thời là trung trực của BE
Hay OA là trung trực của BE
\(\Rightarrow AB=AE\)
Xét hai tam giác OAB và OAE có: \(\left\{{}\begin{matrix}OB=OE=R\\AB=AE\left(cmt\right)\\OA\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta OAB=\Delta OAE\left(c.c.c\right)\)
\(\Rightarrow\widehat{AEO}=\widehat{ABO}=90^0\Rightarrow AE\) là tiếp tuyến của (O)
Xét (O; R):
AB là tiếp tuyến; B là tiếp điểm (gt).
=> OB vuông góc AB (Tính chất tiếp tuyến).
=> Tam giác ABO vuông tại B.
=> A; B; O thuộc đường tròn đường kính OA. (1)
Xét (O; R):
AC là tiếp tuyến; C là tiếp điểm (gt).
=> OC vuông góc AC (Tính chất tiếp tuyến).
=> Tam giác ACO vuông tại C.
=> A; C; O thuộc đường trong đường kính AO. (2)
Từ (1); (2) => A; B; O; C cùng thuộc đường tròn đường kính AO (đpcm).
a: Xét tứ giác ABOC có
\(\widehat{ABO}+\widehat{ACO}=180^0\)
Do đó: ABOC là tứ giác nội tiếp
a) Xét tứ giác OAMC có
\(\widehat{OAM}\) và \(\widehat{OCM}\) là hai góc đối
\(\widehat{OAM}+\widehat{OCM}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: OAMC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a: góc OAM+góc OCM=180 độ
=>OAMC nội tiếp
b: CE//BD
=>góc AKM=góc AEC=góc ACM
=>AKCM nội tiếp
=>A,K,C,M cùng nằm trên 1 đường tròn
=>góc OKM=90 độ
=>K là trung điểm của BD
a: Xét tứ giác ABOC có
\(\widehat{ABO}+\widehat{ACO}=180^0\)
Do đó: ABOC là tứ giác nội tiếp
c: Xét (O) có
ΔBED nội tiếp
BD là đường kính
Do đó: ΔBED vuông tại E
Xét ΔBAD vuông tại B có BE là đường cao
nên \(AE\cdot AD=AB^2\left(1\right)\)
Xét ΔOBA vuông tại B có BH là đường cao
nên \(AH\cdot AO=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AD=AH\cdot AO\)
hay \(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)
Xét ΔAEH và ΔAOD có
\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)
\(\widehat{HAE}\) chung
Do đó: ΔAEH\(\sim\)ΔAOD
Suy ra: \(\widehat{AHE}=\widehat{ADO}=\widehat{BDE}\)
a Xét (O) có
AB,AC là tiếp tuyến
nên AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc với BC
=>OH*OA=OB^2=R^2
b: góc ABM=góc ACM
góc HBM=90 độ-góc OMB=90 độ-góc OBM=góc ABM
=>BM là phân giác của góc ABH
a: Xét tứ giác OMAN có
\(\widehat{OMA}+\widehat{ONA}=180^0\)
Do đó: OMAN là tứ giác nội tiếp
a) Xét tứ giác ODAE có
\(\widehat{ODA}\) và \(\widehat{OEA}\) là hai góc đối
\(\widehat{ODA}+\widehat{OEA}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ODAE là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Suy ra: O,D,A,E cùng nằm trên 1 đường tròn(1)
Xét tứ giác OIAE có
\(\widehat{OIA}\) và \(\widehat{OEA}\) là hai góc đối
\(\widehat{OIA}+\widehat{OEA}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: OIAE là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Suy ra: O,I,A,E cùng nằm trên 1 đường tròn(2)
Từ (1) và (2) suy ra 5 điểm A,D,I,O,E cùng nằm trên 1 đường tròn(đpcm)