Cho tam giác ABC vuông tại A có BC=10cm;AB=6cm
a)Tính độ dài AC
b)Tia phân giác của góc ABC cắt AC tại D.Kẻ DE vuông góc BC tại E
Chứng minh tam giác ABD= tam giác EBD
c) Gọi F lafd giao điểm của hai đường thẳng AB và DE
So sánh DE với DF và chứng minh BD vuông góc CF
a, tam giác ABC vuông tại A (gt)
=> AB^2 + AC^2 = BC^2 (đl Pytago)
có AB = 6; BC = 10
=> AC = 8 do AC > 0
b, xét tam giác DAB và tam giác DEB có : BD chung
^DAB = ^DEB = 90
^ABD = ^EBD do BD là phân giác của ^ABC (gt)
=> tg DAB = tg DEB (ch-gn)
c, tg DAB = tg DEB (câu b)
=> DA = DE (Đn)
xét tg DAF và tg DEC có : ^DAF = ^DEC = 90
^ADF = ^EDC (Đối đỉnh)
=> tg DAF = tg DEC (cgv-gnk)
=> DF = DC (đn)
có DC > DE
=> DE < DF
+ xét tg CFB có : CA _|_ FB; FE _|_ BC mà FE cắt CA tại D
=> BD _|_ CF
cảm ơn bạn