Tìm GTLN - GTNN của:
1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=x+\dfrac{1}{x}-5\ge2\sqrt{\dfrac{x}{x}}-5=-3\)
\(y_{min}=-3\) khi \(x=1\)
\(y=4x^2+\dfrac{1}{2x}+\dfrac{1}{2x}-4\ge3\sqrt[3]{\dfrac{4x^2}{2x.2x}}-4=-1\)
\(y_{min}=-1\) khi \(x=\dfrac{1}{2}\)
\(y=x+\dfrac{4}{x}\Rightarrow y'=1-\dfrac{4}{x^2}=0\Rightarrow x=-2\)
\(y\left(-2\right)=-4\Rightarrow\max\limits_{x>0}y=-4\) khi \(x=-2\)
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
Lời giải:
TXĐ: $[-1;1]$
$y'=\frac{1}{2\sqrt{x+1}}-\frac{1}{2\sqrt{1-x}}+\frac{x}{2}$
$y'=0\Leftrightarrow x=0$
$f(0)=2$;
$f(1)=f(-1)=\sqrt{2}+\frac{1}{4}$
Vậy $f_{\min}=2; f_{\max}=\frac{1}{4}+\sqrt{2}$
a, Đồ thị hàm số \(y=cosx\): \(\left(A=\left(-\dfrac{\pi}{2};0\right);B=\left(\dfrac{\pi}{2};0\right)\right)\)
Dựa vào đồ thị ta có \(\left\{{}\begin{matrix}y_{min}=0\\y_{max}=1\end{matrix}\right.\)
b, Đồ thị hàm số \(y=sinx\): \(\left(A=\left(-\dfrac{\pi}{2};-1\right);A=\left(\dfrac{\pi}{2};1\right)\right)\)
\(c,P=\dfrac{x^2-x^2+8xy-16y^2}{x^2+4y^2}=\dfrac{8\left(\dfrac{x}{y}\right)-16}{\left(\dfrac{x}{y}\right)^2+4}\)
Đặt \(\dfrac{x}{y}=t\)
\(\Leftrightarrow P=\dfrac{8t-16}{t^2+4}\Leftrightarrow Pt^2+4P=8t-16\\ \Leftrightarrow Pt^2-8t+4P+16=0\)
Với \(P=0\Leftrightarrow t=2\)
Với \(P\ne0\Leftrightarrow\Delta'=16-P\left(4P+16\right)\ge0\)
\(\Leftrightarrow-P^2-4P+4\ge0\Leftrightarrow-2-2\sqrt{2}\le P\le-2+2\sqrt{2}\)
Vậy \(P_{max}=-2+2\sqrt{2}\Leftrightarrow t=\dfrac{4}{P}=\dfrac{4}{-2+2\sqrt{2}}=2+\sqrt{2}\)
\(\Leftrightarrow\dfrac{x}{y}=2+2\sqrt{2}\)
a)Có \(a^2+1\ge2a\) với mọi a; \(b^2+1\ge2b\) với mọi b
Cộng vế với vế \(\Rightarrow a^2+b^2+2\ge2\left(a+b\right)\)
Dấu = xảy ra <=> a=b=1
b) Áp dụng BĐT bunhiacopxki có:
\(\left(x+y\right)^2\le\left(1+1\right)\left(x^2+y^2\right)\Leftrightarrow\left(x+y\right)^2\le2\)
\(\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)
\(\Rightarrow\left(x+y\right)_{max}=\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=\dfrac{\sqrt{2}}{2}\)
\(\left(x+y\right)_{min}=-\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=-\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=-\dfrac{\sqrt{2}}{2}\)
c) \(S=\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{2ab}\)
Với x,y>0, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) (1)
Thật vậy (1) \(\Leftrightarrow\dfrac{y+x}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)\(\Leftrightarrow\left(x-y\right)^2\ge0\) (lđ)
Áp dụng (1) vào S ta được:
\(S\ge\dfrac{4}{a^2+b^2+2ab}+\dfrac{1}{2ab}\)
Lại có: \(ab\le\dfrac{\left(a+b\right)^2}{4}\) \(\Leftrightarrow2ab\le\dfrac{\left(a+b\right)^2}{2}\Leftrightarrow2ab\le\dfrac{1}{2}\)\(\Rightarrow\dfrac{1}{2ab}\ge2\)
\(\Rightarrow S\ge\dfrac{4}{\left(a+b\right)^2}+2=6\)
\(\Rightarrow S_{min}=6\Leftrightarrow a=b=\dfrac{1}{2}\)
1: \(y=x+\dfrac{4}{\left(x-2\right)^2}\)
\(\Leftrightarrow y'=1+\left(\dfrac{4}{\left(x-2\right)^2}\right)'\)
=>\(y'=1+\dfrac{4'\left(x-2\right)^2-4\left[\left(x-2\right)^2\right]'}{\left(x-2\right)^4}\)
=>\(y'=1+\dfrac{-4\cdot2\cdot\left(x-2\right)'\left(x-2\right)}{\left(x-2\right)^4}\)
=>\(y'=1-\dfrac{8}{\left(x-2\right)^3}\)
Đặt y'=0
=>\(\dfrac{8}{\left(x-2\right)^3}=1\)
=>\(\left(x-2\right)^3=8\)
=>x-2=2
=>x=4
Đặt \(f\left(x\right)=x+\dfrac{4}{\left(x-2\right)^2}\)
\(f\left(4\right)=4+\dfrac{4}{\left(4-2\right)^2}=4+1=5\)
\(f\left(0\right)=0+\dfrac{4}{\left(0-2\right)^2}=0+\dfrac{4}{4}=1\)
\(f\left(5\right)=5+\dfrac{4}{\left(5-2\right)^2}=5+\dfrac{4}{9}=\dfrac{49}{9}\)
Vì f(0)<f(4)<f(5)
nên \(f\left(x\right)_{max\left[0;5\right]\backslash\left\{2\right\}}=f\left(5\right)=\dfrac{49}{9}\) và \(f\left(x\right)_{min\left[0;5\right]\backslash\left\{2\right\}}=1\)
2: \(y=cos^22x-sinx\cdot cosx+4\)
\(=1-sin^22x-\dfrac{1}{2}\cdot sin2x+4\)
\(=-sin^22x-\dfrac{1}{2}\cdot sin2x+5\)
\(=-\left(sin^22x+\dfrac{1}{2}\cdot sin2x-5\right)\)
\(=-\left(sin^22x+2\cdot sin2x\cdot\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{81}{16}\right)\)
\(=-\left(sin2x+\dfrac{1}{4}\right)^2+\dfrac{81}{16}\)
\(-1< =sin2x< =1\)
=>\(-\dfrac{3}{4}< =sin2x+\dfrac{1}{4}< =\dfrac{5}{4}\)
=>\(0< =\left(sin2x+\dfrac{1}{4}\right)^2< =\dfrac{25}{16}\)
=>\(0>=-\left(sin2x+\dfrac{1}{4}\right)^2>=-\dfrac{25}{16}\)
=>\(\dfrac{81}{16}>=-sin\left(2x+\dfrac{1}{4}\right)^2+\dfrac{81}{16}>=-\dfrac{25}{16}+\dfrac{81}{16}=\dfrac{7}{2}\)
=>\(\dfrac{81}{16}>=y>=\dfrac{7}{2}\)
\(y_{min}=\dfrac{7}{2}\) khi \(sin2x+\dfrac{1}{4}=\dfrac{5}{4}\)
=>\(sin2x=1\)
=>\(2x=\dfrac{\Omega}{2}+k2\Omega\)
=>\(x=\dfrac{\Omega}{4}+k\Omega\)
\(y_{max}=\dfrac{81}{16}\) khi sin 2x=-1
=>\(2x=-\dfrac{\Omega}{2}+k2\Omega\)
=>\(x=-\dfrac{\Omega}{4}+k\Omega\)