K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2019

bé hơn hoặc bằng 15 nha bn

13 tháng 3 2019

bé hơn hoặc bằng 11 nha bn

bn làm ko đc thì đừng ns

thầy mik làm đc ra rồi

nhưng bắt mik làm lại thôi bn à

\(x^2+y^2+z^2=1\)\(\Leftrightarrow\)\(x^2=1-\left(y^2+z^2\right)\le1\)\(\Leftrightarrow\)\(-1\le x\le1\)\(\Leftrightarrow\)\(0\le1-x\le2\)

Tương tự, ta cũng có \(0\le1-y\le2;0\le1-z\le2\)

Lại có : \(x^2+y^2+z^2-x^3-y^3-z^3=1-1\)

\(\Leftrightarrow\)\(x^2\left(1-x\right)+y^2\left(1-y\right)+z^2\left(1-z\right)=0\)

Mà \(1-x;1-y;1-z\ge0\) nên \(x^2\left(1-x\right);y^2\left(1-y\right);z^2\left(1-z\right)\ge0\)

\(\Leftrightarrow\)\(x^2\left(1-x\right)=y^2\left(1-y\right)=z^2\left(1-z\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=y=z=0\left(loai\right)\\x=y=z=1\left(nhan\right)\end{cases}}\)

\(\Rightarrow\)\(P=xyz=1.1.1=1\)

... 

10 tháng 9 2016

Ta có x + \(\frac{1}{x}\ge2\)

y\(\frac{1}{y}+\frac{1}{y}\ge3\)

z3 + \(\frac{1}{z}+\frac{1}{z}+\frac{1}{z}\ge4\)

Cộng vế theo vế ta được

x + y2 + z3 + \(\frac{1}{x}+\frac{2}{y}+\frac{3}{z}\ge9\)

Dấu bằng xảy ra khi x = y = z = 1

8 tháng 3 2017

Ta có: 

\(\hept{\begin{cases}x+y+z=3\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3}\\x^2+y^2+z^2=17\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y+z=3\\2\left(xy+yz+zx\right)=\frac{2xyz}{3}\\x^2+y^2+z^2=17\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y+z=3\\2\left(xy+yz+zx\right)=\frac{2xyz}{3}\\\left(x+y+z\right)^2=17+\frac{2xyz}{3}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y+z=3\\xy+yz+zx=-4\\xyz=-12\end{cases}}\)

Từ đây ta có x, y, z sẽ là 3 nghiệm của phương trình

\(X^3-3X^2-4X+12=0\) 

\(\Leftrightarrow\left(X-3\right)\left(X-2\right)\left(X+2\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}X=3\\X=2\\X=-2\end{cases}}\)

Vậy các bộ x, y, z thỏa đề bài là: \(\left(x,y,z\right)=\left(-2,2,3;-2,3,2;2,-2,3;2,3,-2;3,2,-2;3,-2,2\right)\)

11 tháng 3 2017

?????????????????????????

10 tháng 6 2017

\(\hept{\begin{cases}xy+x+y=3< =>xy+x+y+1=4< =>\left(x+1\right)\left(y+1\right)=4\left(1\right)\\yz+y+z=8< =>yz+y+z+1=9< =>\left(y+1\right)\left(z+1\right)=9\left(2\right)\\xz+x+z=15< =>xz+x+z+1=16< =>\left(x+1\right)\left(z+1\right)=16\left(3\right)\end{cases}}\)

Từ (1) , (2) và (3):

\(=>\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2=4.9.16=576=24^2\)

Do x,y,z dương =>(x+1)(y+1)(z+1)=24

từ (1)=>z+1=24:4=6=>z=5

từ (2)=>x+1=\(\frac{8}{3}\)=>x=\(\frac{5}{3}\)

từ (3)=>y+1=\(\frac{3}{2}\)=>y=\(\frac{1}{2}\)

\(=>P=x+y+z=5+\frac{5}{3}+\frac{1}{2}=\frac{43}{6}\)

7 tháng 1 2017

Cộng 1 vào 2 vế của 3 pt ta được: 
x+xy+y+1=1+1 <=> (x+1)(y+1)=2 
y+yz+z+1=3+1 <=> (y+1)(z+1)=4 
z+xz+z+1=7+1 <=> (z+1)(x+1)=8 
Ta có: (x+1)(y+1)(y+1)(z+1)=(y+1)2 .8=2.4=8 => (y+1)2 =1 

(y+1)(z+1)(z+1)(x+1)=(z+1)2 .2=4.8=32 => (z+1)2 =16 

(z+1)(x+1)(x+1)(y+1)=(x+1)2 .4=2.8=16 => (x+1)2 =4 
Do x;y;z không âm nên x= 1; y= 0; z= 3 
=> M = 1 +02 +32 =10

16 tháng 8 2018

ket qua =10

x=2,y=2,z=4

8 tháng 7 2018

lời giải