Cho hai tập hợp \(A=\left(-4;3\right)\) và \(B=\left(m-7;m\right)\). Tìm giá trị thực của tham số m để \(B\subset A\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A ∪ B = (-∞; 15)
A ∩ B = [-2; 3)
b) Để A ⊂ B thì:
m - 1 > -2 và m + 4 ≤ 3
*) m - 1 > -2
m > -2 + 1
m > -1
*) m + 4 ≤ 3
m ≤ 3 - 4
m ≤ -1
Vậy không tìm được m thỏa mãn đề bài
a) \(A = \{ 3;2;1;0; - 1; - 2; - 3; -4; ...\} \)
Tập hợp B là tập các nghiệm nguyên của phương trình \(\left( {5x - 3{x^2}} \right)\left( {{x^2} + 2x - 3} \right) = 0\)
Ta có:
\(\begin{array}{l}\left( {5x - 3{x^2}} \right)\left( {{x^2} + 2x - 3} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}5x - 3{x^2} = 0\\{x^2} + 2x - 3 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\left[ \begin{array}{l}x = 0\\x = \frac{5}{3}\end{array} \right.\\\left[ \begin{array}{l}x = 1\\x = - 3\end{array} \right.\end{array} \right.\end{array}\)
Vì \(\frac{5}{3} \notin \mathbb Z\) nên \(B = \left\{ { - 3;0;1} \right\}\).
b) \(A \cap B = \left\{ {x \in A|x \in B} \right\} = \{ - 3;0;1\} = B\)
\(A \cup B = \) {\(x \in A\) hoặc \(x \in B\)} \( = \{ 3;2;1;0; - 1; - 2; - 3;...\} = A\)
\(A\,{\rm{\backslash }}\,B = \left\{ {x \in A|x \notin B} \right\} = \{ 3;2;1;0; - 1; - 2; - 3;...\} {\rm{\backslash }}\;\{ - 3;0;1\} = \{ 3;2; - 1; - 2; - 4; - 5; - 6;...\} \)
a, A có \(\left(201-9\right):3+1=65\left(phần.tử\right)\)
\(B=A\) nên cũng có 65 phần tử
b, \(C=A\cap B=\left\{9;12;15;...;201\right\}\)
\(C=\left\{x\in N|x⋮3;9\le x\le201\right\}\)
\(mx^2-4x+m-3=0\left(1\right)\)
Để tập hợp B có đúng 2 tập con và \(B\subset A\) thì \(\left(1\right)\) có 2 nghiệm phân biệt cùng dương
\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\\P>0\\S>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4-m\left(m-3\right)>0\\\dfrac{m-3}{m}>0\\\dfrac{4}{m}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-3m-4< 0\\m< 0\cup m>3\\m>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-1< m< 4\\m< 0\cup m>3\\m>0\end{matrix}\right.\)
\(\Leftrightarrow3< m< 4\)
Ta có:
\(\overrightarrow{AG}=\overrightarrow{AB}+\overrightarrow{BG}\)
+) \(\overrightarrow{BG}=\dfrac{1}{3}\left(\overrightarrow{BM}+\overrightarrow{BN}\right)=\dfrac{1}{3}\left(-\dfrac{2}{3}\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CN}\right)\)
\(=\dfrac{1}{3}\left(-\dfrac{2}{3}\overrightarrow{AB}+\overrightarrow{AC}-\overrightarrow{AB}-\dfrac{1}{2}\overrightarrow{DC}\right)=\dfrac{1}{3}\left(-\dfrac{13}{6}\overrightarrow{AB}+\overrightarrow{AC}\right)\)
\(=-\dfrac{13}{18}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)
=> \(\overrightarrow{AG}=\dfrac{5}{18}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)
Mặt khác:
\(\overrightarrow{AI}=\overrightarrow{AB}+\overrightarrow{BI}=\overrightarrow{AB}+k\overrightarrow{BC}=\overrightarrow{AB}+k\left(\overrightarrow{AC}-\overrightarrow{AB}\right)=\left(1-k\right)\overrightarrow{AB}+k\overrightarrow{AC}\)
Để A, G, I thẳng hàng
=>\(\dfrac{\dfrac{5}{18}}{1-k}=\dfrac{\dfrac{1}{3}}{k}\Rightarrow k=\dfrac{6}{11}\)
a) Liệt kê các phần tử của tập hợp
Ta có: .
Do đó: .
b) Cho hai tập hợp và . Xác định tập .
Ta có:
⚡.
⚡.
Suy ra .
Gọi T là biến cố "Trung bình cộng của các phần tử trong mỗi tập đều bằng 30." Biến cố này tương đương với biến cố "Tổng các phần tử trong mỗi tập đều bằng 60."
Gọi A và B lần lượt là các biến cố "Tổng của các phần tử trong tập thứ nhất bằng 60." và "Tổng của các phần tử trong tập thứ hai bằng 60."
Số các cặp \(\left(i,j\right)\) sao cho \(i\ne j;i,j\in A\) là \(C^2_{90}=4005\). Ta liệt kê các kết quả thuận lợi cho A:
\(X=\left\{\left(1;59\right);\left(2;58\right);\left(3;57\right);...;\left(29;31\right)\right\}\) (có 29 phần tử). Vậy \(P\left(A\right)=\dfrac{29}{4005}\). Khi đó \(P\left(B\right)=\dfrac{28}{4004}=\dfrac{1}{143}\). Do đó \(P\left(T\right)=P\left(AB\right)=P\left(A\right).P\left(B\right)=\dfrac{29}{4005}.\dfrac{1}{143}=\dfrac{29}{572715}\).
Vậy xác suất để trung bình cộng của các phần tử trong mỗi tập đều bằng 30 là \(\dfrac{29}{572715}\)
\(B\subset A\Leftrightarrow\left\{{}\begin{matrix}m-7\ge-4\\m\le3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ge3\\m\le3\end{matrix}\right.\)
\(\Leftrightarrow m=3\)