1.A(-4;-2) B(4;2) C(2;-2)
viết phương trình đường thẳng d vuông góc với BC và cách điểm A một khoảng bằng \(\sqrt{5}\)
2.cho hai điểm P(1;6) và Q(-3;-4) và đường thẳng Δ: 2x-y-1=0 tìm tọa độ điểm N thuộc Δ sao cho |NP-NQ| lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\left(\frac{a-b}{a^{\frac{3}{4}}+a^{\frac{1}{2}}.b^{\frac{1}{4}}}-\frac{a^{\frac{1}{2}}-b^{\frac{1}{2}}}{a^{\frac{1}{4}}+b^{\frac{1}{4}}}\right):\left(a^{\frac{1}{4}}-b^{\frac{1}{4}}\right)^{-1}\sqrt{\frac{a}{b}}\)
\(=\left[\frac{a-b}{a^{\frac{1}{2}}\left(a^{\frac{1}{4}}+b^{\frac{1}{4}}\right)}-\frac{a^{\frac{1}{2}}-b^{\frac{1}{2}}}{a^{\frac{1}{4}}+b^{\frac{1}{4}}}\right]:\left(a^{\frac{1}{4}}-b^{\frac{1}{4}}\right)^{-1}\sqrt{\frac{b}{a}}\)
\(=\frac{a-b-a+a^{\frac{1}{2}}.b^{\frac{1}{2}}}{a^{\frac{1}{2}}\left(a^{\frac{1}{4}}+b^{\frac{1}{4}}\right)}.\frac{1}{\left(a^{\frac{1}{4}}-b^{\frac{1}{4}}\right)}=\frac{b^{\frac{1}{2}}}{a^{\frac{1}{2}}}\frac{\left(a^{\frac{1}{4}}-b^{\frac{1}{4}}\right)}{\left(a^{\frac{1}{4}}-b^{\frac{1}{4}}\right)}\sqrt{\frac{a}{b}}.\sqrt{\frac{a}{b}}=1\)
a,a+1/4=2 3/4-1 1/2
a+1/2=5/4
a=5/4-1/2
a=3/4
b,a-7/4=13/4-7/9
a-7/4=89/36
a= 89/36+7/4
a=152/36
c,3/2-a=17/6-1/6
3/2-a=8/3
a= 3/2-8/3
a= -7/6
Theo BĐT AM-GM: \(a^4+b^4\ge2a^2b^2\)
Tương tự suy ra \(a^4+b^4+c^4\)\(\ge a^2b^2+b^2c^2+c^2a^2\)
Tiếp tục dùng AM-GM: \(a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge2ab^2c\)
Tương tự suy ra \(a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\)
\(\Rightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
\(\Rightarrow a^4+b^4+c^4+abcd\ge abc\left(a+b+c\right)+abcd\)\(=abc\left(a+b+c+d\right)\)
\(\Rightarrow\frac{1}{a^4+b^4+c^4+abcd}\le\frac{1}{abc\left(a+b+c+d\right)}\)
Tương tự cho 3 BĐT còn lại rồi cộng theo vế:
\(VT\le\frac{a+b+c+d}{abcd\left(a+b+c+d\right)}=\frac{1}{abcd}=VP\)
Ta chứng minh bất đẳng thức sau
Với x, y, z > 0 ta luôn có \(x^4+y^4+z^4\ge xyz\left(x+y+z\right)\) (1)
Theo BĐT Cô-si
\(x^4+x^4+y^4+z^4\ge4\sqrt[4]{x^8y^4z^4}=4x^2yz\)
\(y^4+y^4+z^4+x^4\ge4\sqrt[4]{y^8z^4x^4}=4y^2zx\)
\(z^4+z^4+x^4+y^4\ge4\sqrt[4]{z^8x^4y^4}=4z^2xy\)
Cộng vế theo vế ta được: \(4\left(x^4+y^4+z^4\right)\ge4\left(x^2yz+y^2zx+z^2xy\right)\)
\(\Leftrightarrow\) \(x^4+y^4+z^4\ge xyz\left(x+y+z\right)\)
Vậy (1) đc c/m
Bất đẳng thức cần c/m có thể viết lại thành
\(\frac{abcd}{a^4+b^4+c^4+abcd}+\frac{abcd}{b^4+c^4+d^4+abcd}+\frac{abcd}{c^4+d^4+a^4+abcd}+\frac{abcd}{d^4+a^4+b^4+abcd}\le1\)
Áp dụng (1) ta có
\(\frac{abcd}{a^4+b^4+c^4+abcd}\le\frac{abcd}{abc\left(a+b+c\right)+abcd}=\frac{abcd}{abc\left(a+b+c+d\right)}=\frac{d}{a+b+c+d}\)
Tương tự
\(\frac{abcd}{b^4+c^4+d^4+abcd}\le\frac{a}{a+b+c+d}\)
\(\frac{abcd}{c^4+d^4+a^4+abcd}\le\frac{b}{a+b+c+d}\)
\(\frac{abcd}{d^4+a^4+b^4+abcd}\le\frac{c}{a+b+c+d}\)
Cộng theo vế suy ra đpcm.
a) \(...\dfrac{11}{4}-a+\dfrac{1}{4}=\dfrac{3}{2}\)
\(\dfrac{11}{4}+\dfrac{1}{4}-a=\dfrac{3}{2}\)
\(3-a=\dfrac{3}{2}\)
\(a=3-\dfrac{3}{2}\)
\(a=\dfrac{6}{2}-\dfrac{3}{2}\)
\(a=\dfrac{3}{2}\)
b) \(...\dfrac{13}{4}-a-\dfrac{13}{4}=\dfrac{7}{8}\)
\(\dfrac{13}{4}-\dfrac{13}{4}-a=\dfrac{7}{8}\)
\(0-a=\dfrac{7}{8}\)
\(a=-\dfrac{7}{8}\) (ra số âm lớp 5 chưa học nên bạn xem lại đề)
c) \(...\dfrac{17}{6}-\dfrac{3}{2}-a=\dfrac{1}{6}\)
\(\dfrac{17}{6}-\dfrac{9}{6}-a=\dfrac{1}{6}\)
\(\dfrac{8}{6}-a=\dfrac{1}{6}\)
\(a=\dfrac{8}{6}-\dfrac{1}{6}\)
\(a=\dfrac{7}{6}\)
a, 2\(\dfrac{3}{4}\) - a + \(\dfrac{1}{4}\) = 1\(\dfrac{1}{2}\)
a = 2 + \(\dfrac{3}{4}\) + \(\dfrac{1}{4}\) - 1 - \(\dfrac{1}{2}\)
a = 2 + 1 - 1 - \(\dfrac{1}{2}\)
a = 2 - \(\dfrac{1}{2}\)
a = \(\dfrac{3}{2}\)
b, 3\(\dfrac{1}{4}\) - a - 3\(\dfrac{1}{4}\) = \(\dfrac{7}{8}\)
(3\(\dfrac{1}{4}\) - 3\(\dfrac{1}{4}\)) - a = \(\dfrac{7}{8}\)
a = - \(\dfrac{7}{8}\)
c, 2\(\dfrac{5}{6}\) - 1\(\dfrac{1}{2}\) - a = \(\dfrac{1}{6}\)
a = 2 + \(\dfrac{5}{6}\) - 1 - \(\dfrac{1}{2}\) - \(\dfrac{1}{6}\)
a = (2-1) + (\(\dfrac{5}{6}\) - \(\dfrac{1}{6}\)) - \(\dfrac{1}{2}\)
a = 1 + \(\dfrac{2}{3}\) - \(\dfrac{1}{2}\)
a = \(\dfrac{7}{6}\)
Theo giả thiết kết hợp sử dụng BĐT AM - GM có:
\(\left(a+b-c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{c}\right)=\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+1-\left[c\left(a+b\right)+c\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\right]\)
\(\le\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+1-2\sqrt{\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)}=\left[\sqrt{\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)}-1\right]^2\)
Suy ra \(\sqrt{\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)}-1\ge2\Leftrightarrow\sqrt{\dfrac{a}{b}+\dfrac{b}{a}+2}\ge3\)
\(\Leftrightarrow\dfrac{a}{b}+\dfrac{b}{a}\ge7\)
Khi đó, sử dụng BĐT Cauchy - Schwarz ta có:
\(\left(a^4+b^4+c^4\right)\left(\dfrac{1}{a^4}+\dfrac{1}{b^4}+\dfrac{1}{c^4}\right)\ge\left[\sqrt{\left(a^4+b^4\right)\left(\dfrac{1}{a^4}+\dfrac{1}{b^4}\right)}+1\right]^2\)
\(=\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}+1\right)^2=\left[\left(\dfrac{a}{b}+\dfrac{b}{a}\right)^2-1\right]^2\ge\left(7^2-1\right)^2=2304\)
Đẳng thức xảy ra khi và chỉ khi \(ab=c^2\) và \(\dfrac{a}{b}+\dfrac{b}{a}=7\)
(a+b-c)(1/a+1/b-c)=(a+b)(1/a+1/b)+1-[c(a+b)+c(1/a+1/b)]<=(a+b)(1/a+1/b)+1-2căn (a+b)(1/a+1/b)
=[(căn (a+b)(1/a+1/b))-1]^2
=>\(\sqrt{\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)}-1>=2\)
=>\(\sqrt{\dfrac{a}{b}+\dfrac{b}{a}+2}>=3\)
=>a/b+b/a>=7
(a^4+b^4+c^4)(1/a^4+1/b^4+1/c^4)>=[căn ((a^4+b^4)(1/a^4+1/b^4))+1]^2
=(a^2/b^2+b^2/a^2+1)^2=[(a/b+b/a)^2-1]^2>=(7^2-1)^2=2304
=>ĐPCM
a) \(2\dfrac{3}{4}-a+\dfrac{1}{4}=1\dfrac{1}{2}\)
=> \(\dfrac{11}{4}\) \(-a+\dfrac{1}{4}=\dfrac{3}{2}\)
=> \(\dfrac{11}{4}-a\) = \(\dfrac{3}{2}-\dfrac{1}{4}\)
=> a = \(\dfrac{11}{4}-\dfrac{5}{4}\) =\(\dfrac{3}{2}\)
Vậy a = \(\dfrac{3}{2}\)
b) \(3\dfrac{1}{4}-a-1\dfrac{3}{4}=\dfrac{7}{8}\)
=> \(\dfrac{13}{4}-a-\dfrac{7}{4}=\dfrac{7}{8}\)
=> \(\dfrac{13}{4}-a=\dfrac{21}{8}\)
=> \(a=\dfrac{13}{4}-\dfrac{21}{8}=\dfrac{5}{8}\)
Vậy a = \(\dfrac{5}{8}\)