K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 

Giả sử M(x;y;z)M(x;y;z) thỏa mãn MA=kMBMA→=kMB→ với k1k≠1.
Ta có MA=(x1x;y1y;z1z),MB=(x2x;y2y;z2z)MA→=(x1–x;y1–y;z1–z),MB→=(x2–x;y2–y;z2–z)

 

MA=kMBx1x=k(x2x)y1y=k(y2y)z1z=k(z2z)⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪x=x1kx21ky=y1ky21kz=z1kz21kMA→=kMB→⇔{x1–x=k(x2–x)y1–y=k(y2–y)z1–z=k(z2–z)⇔{x=x1–kx21–ky=y1–ky21–kz=z1–kz21–k

11 tháng 6 2019

mấy bạn ơi hộ mình đi !!!

5 tháng 7 2021

\(x^2-2x-3=mx-2m-2\)

\(x^2-2x+2m-mx-1=0\)

\(x^2-\left(m+2\right)x+2m-1=0\)

\(\Delta=\left(m+2\right)^2-4\left(2m-1\right)\)

\(\Delta=m^2+4m+4-8m+4\)

\(\Delta=m^2-4m+8\)

\(\Delta=\left(m-2\right)^2+4>0\)<=> có 2 n0 pb

\(\hept{\begin{cases}xA+xB=-\frac{b}{a}=\frac{m+2}{1}=m+2\\xA.xB=\frac{c}{a}=2m-1\end{cases}}\)

\(xA^2+xB^2=10\)

\(\left(xA+xB\right)^2-2xA.xB=10\)

\(\left(m+2\right)^2-2\left(2m-1\right)=10\)

\(m^2+2m+4-4m+2=10\)

\(m^2-2m+6=10\)

\(m^2-2m-4=0\)

\(\Delta=2^2-\left(-16\right)=20\)

\(\sqrt{\Delta}=2\sqrt{5}\)

\(x_1=\frac{2+2\sqrt{5}}{2}=1+\sqrt{5}\)

\(x_2=\frac{2-2\sqrt{5}}{2}=1-\sqrt{5}\)

1 tháng 6 2017

Bài này sử dựng định lý viet để chứng minh:

  1. Gọi phương trình đường thẳng (d) có hệ số góc a có dạng : \(y=ax+b\left(a\ne0\right)\)\(M\left(1,2\right)\)thuộc (d) nên : \(2=a+b\Rightarrow b=2-a\left(1\right)\). Xét phương trình hoành độ giao điểm có : \(x^2=ax+b\left(2\right)\)thế 1 vào 2 có \(x^2=ax+2-a\Leftrightarrow x^2-ax-\left(2-a\right)=0\)phương trình có : \(\Delta=a^2+4\left(2-a\right)=a^2-4a+8\)\(\Rightarrow\Delta=\left(a^2-4a+4\right)+4=\left(a-2\right)^2+4\ge4\forall a\) nên phương trình luôn có hai nghiệm phân biệt với mọi giá tri của \(a\ne0\)
  2. Khi đó parabol cắt d tại hai điểm A,B  với A,B có hoành độ lần lượt là \(x_A,x_B\) theo vi ét ta có : \(\hept{\begin{cases}x_A+x_B=a\\x_Ax_B=-\left(2-a\right)\end{cases}}\)ta xét \(x_A+x_B-x_Ax_B=a+\left(2-a\right)=2\left(dpcm\right)\)
14 tháng 1 2019

Đáp án A

PT hoành độ giao điểm là  x − 2 = 2 x + 1 x − 1 ⇔ x ≠ 1 x 2 − 3 x + 2 = 2 x − 1 ⇔ x ≠ 1 x 2 − 5 x + 3 = 0 ⇒ x A + x B = 5.

15 tháng 7 2019

Đáp án là B.

+ Phương trình hoành độ giao điểm của hai đồ thị:

x − 2 x − 1 = 2 x + 1 ⇔ x 2 − 5 x + 1 = 0   1  

+ x A ; x B  là nghiệm của phương trình (1) nên:

x A + x B = 5.

a: Phương trình hoành độ giao điểm là: \(x^2-mx+m-1=0\)

\(\Delta=\left(-m\right)^2-4\cdot\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\)

Để (P) cắt (d) tại hai điểm phân biệt thì m-2<>0

hay m<>2

b: \(\left|x_A-x_B\right|< 3\)

\(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}< 3\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2< 9\)

\(\Leftrightarrow m^2-4\left(m-1\right)< 9\)

\(\Leftrightarrow\left(m-2\right)^2-3< 0\)

=>(m+1)(m-5)<0

=>-1<m<5

11 tháng 6 2018