Cho các số x=bc+a ; y=ab+c;z=ca+b là các số nguyên tố (a,b,c là các số tự nhiên lớn hơn 0)
Chứng minh rằng: ba số x,y,z ít nhất có hai số bằng nhau.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{c.1+ab}}=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}=\sqrt{\frac{ab}{c\left(b+c\right)+a\left(b+c\right)}}=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\)
\(=\sqrt{\frac{a}{a+c}.\frac{b}{b+c}}\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}\right)\)( bđt Cosi)
Tương tự như trên: \(\sqrt{\frac{bc}{a+bc}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right);\sqrt{\frac{ac}{b+ac}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{c}{b+c}\right)\)
=> \(P\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}+\frac{a}{a+b}+\frac{c}{b+c}+\frac{b}{a+b}+\frac{c}{a+c}\right)=\frac{3}{2}\)
"=" Xảy ra khi và chỉ khi:
\(\frac{a}{a+c}=\frac{b}{b+c}\Leftrightarrow a\left(b+c\right)=b\left(a+c\right)\Leftrightarrow a=b\)
\(\frac{a}{a+b}=\frac{c}{b+c}\Leftrightarrow a=c\)
\(\frac{c}{a+c}=\frac{b}{a+b}\Leftrightarrow b=c\)
\(a+b+c=1\)
Từ các điều trên ta có đc: \(a=b=c=\frac{1}{3}\)
Vậy GTLN của P=3/2 khi và chỉ khi a=b=c=1/3
Chọn C.
Phương pháp: Kiểm tra tính đúng sai của từng mệnh đề.
Cách giải:
a)B(4)= { 4, 8,12,16,20,24,28...}
b)B(8)= {8,16,24,32,40,48,56...}
tự làm mấy câu sau nha bn ~^^~
a) B(4)= { 0;4;8;12;16;20;24;.......}
B(8)={ 0;8;16;24;.....}
BC(4;8) = { 0;8;16;24;...}
bạn tự làm câu này nhé chú bạn học tốt mk ko muốn viết gì thêm