tìm 2 số nguyên dương x ; y biết : \(\frac{x}{8}-\frac{1}{2}=\frac{1}{y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Gọi x là số cần tìm, ta có:
\(x+2>0\left(x>0\right)\)
\(\Rightarrow x-4< 0\)
\(\Rightarrow x< 4\)
\(x=\left\{1;2;3\right\}\)
b)
Gọi x là số cần tìm, khi đó:
\(x-2< 0\left(x< 0\right)\)
\(x+4>0\left(\forall x>-4\right)\)
\(\Rightarrow x=\left(-3;-2;-1\right)\)
Gắt thế,IMO 2003
Đặt \(S=\frac{x^2}{2xy^2-y^3+1}\)
Xét \(b=1\Rightarrow S=\frac{x^2}{2x}=\frac{x}{2}\Rightarrow x=2k\) thỏa mãn
Xét \(b>1\) Đặt \(\frac{x^2}{2xy^2-y^3+1}=u\)
\(\Rightarrow x^2-2y^2ux+\left(y^3-1\right)u=0\)
Xét \(\Delta=\left(2y^2u\right)^2-4\left(b^3-1\right)u\) phải là số chính phương
Ta dễ dàng chứng minh được \(\left(2y^2u-y-1\right)^2< \Delta< \left(2y^2u-y+1\right)^2\)
\(\Rightarrow\Delta=\left(2y^2u-y\right)^2\Rightarrow y^2=4u\)
Đặt \(y=2t\Rightarrow x=t\left(h\right)x=8t^4-t\)
Vậy.........................
\(\frac{x}{8}-\frac{1}{2}=\frac{1}{y}\)
\(\Leftrightarrow\frac{x}{8}-\frac{1}{y}=\frac{1}{2}\)
\(\Leftrightarrow\frac{xy-8}{8y}=\frac{1}{2}\)
\(\Leftrightarrow2\left(xy-8\right)=8y\)
\(\Leftrightarrow2xy-16=8y\)
\(\Leftrightarrow2xy-8y=16\)
\(\Leftrightarrow2y\left(x-4\right)=16\)
\(\Leftrightarrow y\left(x-4\right)=8=1.8=8.1=\left(-1\right)\left(-8\right)=\left(-8\right)\left(-1\right)=2.4=4.2=\left(-2\right)\left(-4\right)=\left(-4\right)\left(-2\right)\)
Còn lại tự lập bảng nha!
Bài giải
\(\frac{x}{8}-\frac{1}{2}=\frac{1}{y}\)
\(\frac{x}{8}-\frac{4}{8}=\frac{1}{y}\)
\(\frac{x-4}{8}=\frac{1}{y}\)
\(xy-4y=8\)
\(y\left(x-4\right)=8\)
\(\Rightarrow\text{ }y,\left(x-4\right)\inƯ\left(8\right)\)
Mà x ; y là số nguyên dương nên :
Ta có bảng :
\(\Rightarrow\text{ }\left(x\text{ ; }y\right)=\left(5\text{ ; }8\right)\text{ ; }\left(6\text{ ; }4\right)\text{ ; }\left(8\text{ ; }2\right)\text{ ; }\left(12\text{ ; }1\right)\)