K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2018

1/ Xét \(p=2\) thì \(p+2=4\) ko phải số nguyên tố (loại)

\(p=3\) thì \(p+2=5;p+10=13\) là số nguyên tố (TM)

\(p=6k-1\left(k\in N;k\ne0\right)\) thì \(p+10=6k-1+10=6k+9\) chia hết cho 3( Loại)

\(p=6k+1\left(k\in N;k\ne0\right)\) thì \(p+2=6k+3\)chia hết cho 3( Loại)

Vậy \(p=3\)

2/ \(x\left(y-1\right)=5y-12\Leftrightarrow x\left(y-1\right)=5\left(y-1\right)-7\)

\(\Leftrightarrow\left(y-1\right)\left(x-5\right)=-7\) => PT ước số (giải được)

18 tháng 7 2018

bài 1 thiếu đề

20 tháng 6 2016

+ Với p = 2 thì p + 2 = 2 + 2 = 4, là hợp số, loại

+ Với p = 3 thì p + 2 = 3 + 2 = 5, p + 10 = 3 + 10 = 13, là số nguyên tố, chọn

+ Với p > 3, do p nguyên tố nên p không chia hết cho 3 => p = 3k + 1 hhoặc p = 3k + 2 (k thuộc N*)

Nếu p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3, chia hết cho 3

Mà 1 < 3 < p + 2 => p + 2 là hợp số, loại

Nếu p = 3k + 2 thì p + 10 = 3k + 2 + 10 = 3k + 12, chia hết cho 3

Mà 1 < 3 < p + 10 => p + 10 là hợp số, loại

Vậy p = 3

20 tháng 6 2016

+ Với p = 2 thì p + 2 = 2 + 2 = 4, là hợp số, loại

+ Với p = 3 thì p + 2 = 3 + 2 = 5, p + 10 = 3 + 10 = 13, là số nguyên tố, chọn

+ Với p > 3, do p nguyên tố nên p không chia hết cho 3 => p = 3k + 1 hhoặc p = 3k + 2 (k thuộc N*)

Nếu p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3, chia hết cho 3

Mà 1 < 3 < p + 2 => p + 2 là hợp số, loại

Nếu p = 3k + 2 thì p + 10 = 3k + 2 + 10 = 3k + 12, chia hết cho 3

Mà 1 < 3 < p + 10 => p + 10 là hợp số, loại

Vậy p = 3

1 tháng 5 2018

Bài làm:

Với p = 3

=> p + 2 = 3 + 2 = 5 ( là số nguyên tố )

     p + 10 = 3 + 10 = 13 ( là số nguyên tố )

Với p > 3 => p = 3k + 1 hoặc p = 3k + 2

Với p = 3k + 1

=> p + 2 = 3k + 1 + 2 = 3k + 3 = 3.(k+1 ) chia hết cho 3 ( là hợp số trái với GT )

Với p = 3k + 2

=> p + 10 = 3k + 2 + 10 = 3k + 12 = 3.(k+4) chia hết cho 3 ( là hợp số trái với GT )

Vậy p = 3

1 tháng 5 2018

BÀI LÀM

Với p = 3

\(\Rightarrow\) p + 2 = 3 + 2 = 5 ( là số nguyên tố )

     p + 10 = 3 + 10 = 13 ( là số nguyên tố )

Với p > 3 => p = 3k + 1 hoặc p = 3k + 2

Với p = 3k + 1

\(\Rightarrow\) p + 2 = 3k + 1 + 2 = 3k + 3 = 3.(k+1 ) chia hết cho 3 ( là hợp số trái với giả thiết )

Với p = 3k + 2

\(\Rightarrow\) p + 10 = 3k + 2 + 10 = 3k + 12 = 3.(k+4) chia hết cho 3 ( là hợp số trái với giả thiết )

Vậy p = 3

30 tháng 12 2017

a) (x+1)+(x+2)+(x+3)+........+(x+100)=5750

(x+x+...+x)+(1+2+3+...+100)=5750

(x.100)+(1+100).100:2=5750

(x.100)+5050=5750

x.100=5750-5050

x.100=700

x       =700:100

x       = 7

Vậy x = 7 

c)  trước hết cần chú ý rằng mọi số tự nhiên đều viết được dưới 1 trong 3 dạng: 3k, 3k +1 hoặc 3k +2(với k là số tự nhiên) 

+) Nếu p = 3k vì p là số nguyên tố nên k = 1 => p = 3 => p+10 = 13 là số nguyên tố; p+14 = 17 là số nguyên tố (1) 

+) Nếu p = 3k +1 => p +14 = 3k+1+14 = 3k+15 = 3(k+5) chia hết cho 3 và lớn hơn 3 nên là hợp số (loại vì không thỏa mãn điều kiện đề bài) (2) 

+) Nếu p=3k+2 => p+10 = 3k+2+10 = 3k+12 = 3(k+4) chia hết cho 3 và lớn hơn 3 nên là hợp số (loại vì không thỏa mẫn điều kiện đề bài) (3) 

Từ (1), (2), (3) suy ra p = 3 là giá trị cần tìm. 

Vậy nha còn câu b mình tạm thời chưa biết, chúc bạn học tốt

29 tháng 4 2018

ab+2a-b=3

a(b+2)-b=3

a(b+2)-b+2=3+2

(b+2)(a-1)=5

sau đó bạn tìm các nghiệm cho chúng thỏa mãn nhé(cho là hai số trên thuộc ước của 5 rồi tính)

18 tháng 7 2015

b) +) Nếu p = 3k + 1 (k thuộc N)=> 2p2 + 1 = 2.(3k + 1)2 + 1 = 2.(9k2 + 6k + 1) + 1 = 18k2 + 12k + 2 + 1 = 18k2 + 12k + 3 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)

+) Nếu p = 3k + 2 (k thuộc N) => 2p2 + 1 = 2.(3k + 2)2 + 1 = 2.(9k2 + 12k + 4) + 1 = 18k2 + 24k + 8 + 1 = 18k2 + 24k + 9 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)

Vậy p = 3k, mà p là số nguyên tố => k = 1 => p = 3

18 tháng 7 2015

a) +) Nếu p = 1 => p + 1 = 2; p + 2 = 3; p + 4 = 5 là số nguyên tố

+) Nếu p > 1 :

p chẵn => p = 2k => p + 2= 2k + 2 chia hết cho 2 => p+ 2 là hợp số => loại

p lẻ => p = 2k + 1 => p + 1 = 2k + 2 chia hết cho 2 => p+1 là hợp số => loại

Vậy p = 1

c) p = 2 => p + 10 = 12 là hợp số => loại

p = 3 => p + 10 = 13; p+ 14 = 17 đều là số nguyên tố => p = 3 thỏa mãn

Nếu p > 3 , p có thể có dạng

+ p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 1

+ p = 3k + 2 => p + 10 = 3k + 12 là hợp số => loại p = 3k + 2

Vậy p = 3

20 tháng 2 2021

Câu 1:

a) \(A=\left[\dfrac{2}{3x}-\dfrac{2}{x+1}.\left(\dfrac{x+1}{3x}-x-1\right)\right]:\dfrac{x-1}{x}\)

        \(=\left[\dfrac{2}{3x}-\dfrac{2}{3x}+\dfrac{2x}{x+1}+\dfrac{2}{x+1}\right]\dfrac{x}{x-1}\)

        \(=\left[\dfrac{2x}{x+1}+\dfrac{2}{x+1}\right]\dfrac{x}{x-1}\)

        \(=\dfrac{2x+2}{x+1}.\dfrac{x}{x-1}\)

        \(=\dfrac{2\left(x+1\right)}{x+1}.\dfrac{x}{x-1}\)

        \(=2.\dfrac{x}{x-1}\)

        \(=\dfrac{2x}{x-1}\)

Câu 1: 

ĐKXĐ: \(x\notin\left\{0;-1;1\right\}\)

a) Ta có: \(A=\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\left(\dfrac{x+1}{3x}-x-1\right)\right):\dfrac{x-1}{x}\)

\(=\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\left(\dfrac{x+1}{3x}-\dfrac{3x\left(x+1\right)}{3x}\right)\right):\dfrac{x-1}{x}\)

\(=\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{x+1-3x^2-3x}{3x}\right):\dfrac{x-1}{x}\)

\(=\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{-3x^2-2x+1}{3x}\right):\dfrac{x-1}{x}\)

\(=\left(\dfrac{2\left(x+1\right)}{3x\left(x+1\right)}-\dfrac{2\cdot\left(-3x^2-2x+1\right)}{3x\left(x+1\right)}\right):\dfrac{x-1}{x}\)

\(=\dfrac{2x+2+6x^2+4x-2}{3x\left(x+1\right)}:\dfrac{x-1}{x}\)

\(=\dfrac{6x^2+6x}{3x\left(x+1\right)}:\dfrac{x-1}{x}\)

\(=\dfrac{6x\left(x+1\right)}{3x\left(x+1\right)}:\dfrac{x-1}{x}\)

\(=2\cdot\dfrac{x}{x-1}=\dfrac{2x}{x-1}\)

b) Để A nguyên thì \(2x⋮x-1\)

\(\Leftrightarrow2x-2+2⋮x-1\)

mà \(2x-2⋮x-1\)

nên \(2⋮x-1\)

\(\Leftrightarrow x-1\inƯ\left(2\right)\)

\(\Leftrightarrow x-1\in\left\{1;-1;2;-2\right\}\)

\(\Leftrightarrow x\in\left\{2;0;3;-1\right\}\)

Kết hợp ĐKXĐ, ta được: \(x\in\left\{2;3\right\}\)

Vậy: Để A nguyên thì \(x\in\left\{2;3\right\}\)

23 tháng 9 2019

n là số tự nhiên Với n=1=>11n là số nguyên tố 

                            Với n>1 =>11n chia hết cho 11 và n (n>1)

Vậy n =1 thif 11n là snt