Cho x> y > 0 và x - y = 7; xy = 60. Không tính x, y hãy tính:
a/ x2 - y2;
b/ x4 + y4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường kính của một bánh xe là 0,6 m. Người đi xe đạp sẽ đi được bao nhiêu km, nếu bánh xe lăn trên mặt đất 1000 vòng?
x - y = 7 => y = x - 7
=> x(x - 7) = 60
x2 - 7x + 12,25 = 72,25
(x - 3,5)2 = 72,25 mà x > 0 => x - 3,5 > -3,5
=> x - 3,5 = 8,5 => x = 12 => y = 60 : 12 = 5 => P = 124 - 54 = 20111
cảm ơn bạn! bạn có thể trả lời câu hỏi nữa mk vừa đăng lên ko
\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)
Dấu "=" <=> x= y = 1/2
\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)
\(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)
Dấu "=" <=> x = 3y
nếu x-y>0 suy ra x-y là một số dương nên x= y=q ( q là một số dương)
a) \(x^2-y^2=\left(x-y\right)\left(x+y\right)=7.\left(x+y\right)\)
ta có: \(\left(x-y\right)^2=49\Leftrightarrow x^2+y^2-2xy=49\Leftrightarrow\left(x^2+y^2+2xy\right)-4xy=49\Leftrightarrow\left(x+y\right)^2=289\Leftrightarrow x+y=17\)
=> A= 7.17=119
b) \(x^4+y^4=\left(x+y\right)^4-\left(4x^3y+6x^2y^2+4xy^3\right)=17^4-2xy\left(2x^2+3xy+2y^2\right)=17^4-120\left[2\left(x^2+y^2\right)+3.60\right]\)
\(=17^4-120\left[2\left(x^2+y^2\right)+3.60\right]==17^4-120\left[2.119+3.60\right]=33361\)
Từ x-y=7 xy=60=>(x-y)2+2xy=72+2.60=>x2+y2=169
=>(x-y)2+4xy=72+4.60
=>x2-2xy+y2+4xy=49+240
=>(x+y)2=289
=>x+y=17 hoặc x+y=-17
a)x2-y2=(x-y)(x+y)=7(x+y)
*)x+y=17=>x2-y2=7.17=119
*)x+y=-17=>x2-y2=7.(-17)=-119
b)Ta có:(x+y)4=174=(-17)4=83521
=>x4+y4+4x3y+4xy3+6x2y2=83521
=>x4+y4+4xy(x2+y2)+6.(602)=83521
=>x4+y4+4.60.169+21600=83521
=>x4+y4+62160=83521
=>x4+y4=21361
a) Từ \(x-y=7=>\left(x-y\right)^2=7^2=>x^2-2xy+y^2=49\)
\(=>x^2+y^2=49+2xy=49+2.60=169\)
\(=>x^2+y^2+2xy=169+2xy=>\left(x+y\right)^2=169+2.60=289=17^2=\left(-17\right)^2\)
\(=>x+y=17\) hoặc \(x+y=-17\)
Mà theo đề: x>y>0 nên x+y > 0,vậy loại x+y=-17
=>x+y=17
Do đó \(x^2-y^2=\left(x-y\right).\left(x+y\right)=7.17=119\)
Vậy........
b) Ta có: \(x^4+y^4=\left(x^2\right)^2+\left(y^2\right)^2=\left(x^2-y^2\right)^2+2x^2y^2\) (theo hđt mở rộng:\(a^2+b^2=\left(a-b\right)^2+2ab\) )
\(=119^2+2.\left(xy\right)^2=119^2+2.60^2=21361\)
Vậy......