1) Cho x>y ; x.y = 1 . CMR : \(\dfrac{x^2+y^2}{x-y}\) ≥ \(2\sqrt{2}\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
13 tháng 12 2021
\(P=\sum\dfrac{1}{x+y+1}\ge\dfrac{9}{2\left(x+y+z\right)+3}=\dfrac{9}{2.1+3}=\dfrac{9}{5}\)
Dấu \("="\Leftrightarrow x=y=z=\dfrac{1}{3}\)
13 tháng 7 2017
|x+1| = 6
Trường hợp 1 : x + 1 = 6 => x = 5
Trường hợp 2 : x + 1 = -6 => x = -7
|y-1| = 14
Trường hợp 1 : y - 1 = 14 => y = 15
Trường hợp 2 : y - 1 = -14 => y = -13
D
0
LH
0
\(VT=\dfrac{\left(x-y\right)^2+2xy}{x-y}\\ =x-y+\dfrac{2.1}{x-y}\\ \overset{Cauchy}{\ge}2\sqrt{\left(x-y\right)\dfrac{2}{x-y}}=2\sqrt{2}\)
Dấu "=" xảy ra <=> x=y=1.
Ở dấu "=" xảy ra bạn giải hệ \(\left\{{}\begin{matrix}xy=1\\x-y=\sqrt{2}\end{matrix}\right.\) rồi sửa lại điều kiện dấu "=" nhé.