K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2018

a) Ta có \(\left(x-y\right)^2=x^2-2xy+y^2=\left(x^2+2xy+y^2\right)-4xy\)

\(=\left(x+y\right)^2-4xy=9^2-4.14=25\)

Vậy nên \(\orbr{\begin{cases}x-y=5\\x-y=-5\end{cases}}\)

b) \(x^2+y^2=\left(x^2+2xy+y^2\right)-2xy=\left(x+y\right)^2-2xy\)

\(=9^2-2.14=53\)

c) \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]\)

\(=9.\left(9^2-3.14\right)=351\)

20 tháng 12 2021

\(D:\dfrac{x}{2}=\dfrac{y}{9}\)

20 tháng 12 2021

Chọn D

4 tháng 2 2016

x-y=9=>x=y+9 và y=x-9

Thay vào để tính từng vế,kq B=1-1=0

1 tháng 12 2017

Bạn Hoàng Phúc giải kĩ hơn được không

23 tháng 10 2019

Ta có:

\(\frac{a}{k}=\frac{x}{a}\Rightarrow a^2=k.x\) (1)

\(\frac{b}{k}=\frac{y}{b}\Rightarrow b^2=k.y\) (2)

Chia (1) cho (2) ta được:

\(\frac{a^2}{b^2}=\frac{k.x}{k.y}=\frac{x}{y}\)

\(\Rightarrow\frac{a^2}{b^2}=\frac{x}{y}\left(đpcm\right).\)

Chúc bạn học tốt!

7 tháng 9 2017

Bài 1:

Bài 2:

\(\frac{4^x}{2^{x+y}}=8\Leftrightarrow4^x=8.2^{x+y}\Leftrightarrow\left(2^2\right)^x=2^3.2^{x+y}\Leftrightarrow2^{2x}=2^{x+y+3}\)<=>2x=x+y+3<=>x=y+3

\(\frac{9^{x+y}}{3^{5y}}=243\Leftrightarrow9^{x+y}=243.3^{5y}\Leftrightarrow\left(3^2\right)^{x+y}=3^5.3^{5y}\Leftrightarrow3^{2x+2y}=3^{5y+5}\)<=>2x+2y=5y+5

<=>2x=3y+5 mà x=y+3 => 2(y+3)=3y+5 <=> 2y+6=3y+5 <=> 6-5=3y-2y <=> y=1 <=> x=1+3=4

Vậy xy=4.1=4

15 tháng 1 2016

= 4(x-y) -9/3(x-y) -(x-y)

= 4*9 - 9/3*9 - 9

= 0