Cho ΔABC vuông tại A (AB > AC). Tia phân giác góc ABC cắt AC tại D; vẽ DE vuông góc BC tại E.
a) Chứng minh ΔADB = ΔEDB
b) Tia ED cắt tia BA tại K. Chứng minh AK = EC
c) Kéo dài BD cắt CK tại F. Gọi G là điểm thuộc đoạn DF sao cho DG=2GF và M là trung điểm CD. Chứng minh K;G;M thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
kẻ thêm MK\(\perp BC\)
ta có \(\Delta ABM=\Delta KBM\left(ch.cgn\right)\)
lí do vì góc B1=góc B2(do BM phân giác),
góc BKM=góc BAM=90\(^o\), cạnh BM chung
từ đó=>AM=MK(các cạnh t ứng)(1)
chứng minh \(\Delta MND=\Delta MAB\left(ch.cgn\right)\)
do góc M1=M2(đối đỉnh), MB=MD(gt), góc DNM=góc BAM(=90 độ)
=>AM=MN(2) từ(1)(2)=>MN=MK
trong tam giác MKC vuông tại K thì cạnh huyền MC lớn nhất
=>MC>MK<=>MC>MN(dpcm)
a: \(\widehat{ACB}=30^0\)
b: Xét ΔABD vuông tại A và ΔABC vuông tại A có
AD=AC
AB chung
Do đó: ΔABD=ΔABC
a: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=5^2-3^2=16\)
=>\(AC=\sqrt{16}=4\left(cm\right)\)
Xét ΔBAC có BD là phân giác
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)
=>\(\dfrac{AD}{3}=\dfrac{CD}{5}\)
mà AD+CD=AC=4
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{4}{8}=\dfrac{1}{2}\)
=>\(AD=\dfrac{3}{2}=1,5\left(cm\right)\)
b: Xét ΔCHD vuông tại H và ΔCAB vuông tại A có
\(\widehat{HCD}\) chung
Do đó: ΔCHD đồng dạng với ΔCAB
=>\(\dfrac{CH}{CA}=\dfrac{CD}{CB}\)
=>\(CH\cdot CB=CA\cdot CD\)
c: Ta có: AE\(\perp\)BC
DH\(\perp\)BC
Do đó: HD//AE
Xét ΔAEC có HD//AE
nên \(\dfrac{HC}{HE}=\dfrac{CD}{DA}\)
mà \(\dfrac{CD}{DA}=\dfrac{BC}{BA}\)
nên \(\dfrac{HC}{HE}=\dfrac{BC}{BA}\)
d: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
=>BA=BH và DA=DH
Ta có: BA=BH
=>B nằm trên đường trung trực của AH(1)
Ta có: DA=DH
=>D nằm trên đường trung trực của AH(2)
Từ (1),(2) suy ra BD là đường trung trực của AH
=>BD\(\perp\)AH tại O và O là trung điểm của AH
=>OA=OH(3)
Xét ΔCMN có AO//MN
nên \(\dfrac{AO}{MN}=\dfrac{CO}{CM}\left(4\right)\)
Xét ΔCBM có OH//BM
nên \(\dfrac{OH}{BM}=\dfrac{CO}{CM}\left(5\right)\)
Từ (3),(4),(5) suy ra MN=BM
=>M là trung điểm của BN
a:BC=căn 6^2+8^2=10cm
Xét ΔABC có AD là phân giác
nên BD/DC=AB/AC
=>BD/DC=3/4
=>BD/3=CD/4=(BD+CD)/(3+4)=10/7
=>BD=30/7cm
b: Xét ΔCED vuông tại E và ΔCAB vuông tại A có
góc C chung
=>ΔCED đồng dạng với ΔCAB
=>S CED/S CAB=(CD/CB)^2=(4/7)^2=16/49
a: Xét ΔABM vuông tại A và ΔNDM vuông tại N có
MB=MD
góc AMB=góc NMD
=>ΔABM=ΔNDM
b: góc EDB=góc ABD
=>góc EDB=góc EBD
=>ΔEBD cân tại E
c: MA=MN
MN<MC
=>MA<MC
a: BC=10cm
b: Xét ΔBAC vuông tại A và ΔBHD vuông tại H có
BC=BD
góc B chung
Do đó:ΔBAC=ΔBHD
c: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
BA=BH
Do đó: ΔBAE=ΔBHE
Suy ra: \(\widehat{ABE}=\widehat{HBE}\)
hay BE là tia phân giác của góc ABC
Tham khảo:
a) xét Δ vuông ADB và Δ vuông EDB có:
BD chung, ∠ABD = ∠EBD (gt) => ΔADB = ΔEDB (ch - gn)
b) ΔADB = ΔEDB => AD = ED
xét ΔADK và ΔEDC có:
AD = ED (cmt), ∠ADK = ∠EDC (đối đỉnh), ∠DAK = ∠DEC (= 90°) => ΔADK = ΔEDC (g - c - g)
=> AK = EC
c) ΔADK = ΔEDC => DK = DC => ΔDKC cân tại D
D là giao điểm của KE và CA là 2 đg cao của ΔBKC => BF cũng là đường cao của ΔBKC
=> BF ⊥ KC <=> DF ⊥ KC
mà ΔDKC cân tại D => DF cũng là đg trung tuyến
DG = 2GF => G là giao điểm của 3 đg trung tuyến của ΔDKC
=> KG đi qua trung điểm của CD => K, G, M thẳng hàng (do M là trung điểm của CD