Cho tam giác ABC vuông tại A có AB = 8cm, AC = 6cm
a) Tính BC
b) Trên cạnh AC lấy điểm E sao cho AE = 2cm; trên tia đối của tia AB lấy điểm D sao cho AD = AB. Chứng minh \(\Delta BEC=\Delta DEC\)
c) Chứng minh DE đi qua trung điểm cạnh BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
b: Xét ΔEDB có
EA là đường cao
EA là đường trung tuyến
Do đó: ΔEDB cân tại E
Xét ΔCBD có
CA là đường cao
CA là đường trung tuyến
Do đó: ΔCBD cân tại C
Xét ΔBEC và ΔDEC có
BE=DE
EC chung
BC=DC
Do đó: ΔBEC=ΔDEC
a: BC=10cm
b: Xét ΔEDB có
EA là đường cao
EA là đường trung tuyến
Do đó: ΔEDB cân tại E
Xét ΔCDB có
CA là đường cao
CA là đường trung tuyến
Do đó: ΔCDB cân tại C
Xét ΔBEC và ΔDEC có
BE=DE
EC chung
BC=DC
Do đó: ΔBEC=ΔDEC
Đáp án:
a) Vì ΔΔABC vuông tại A (Aˆ=90oA^=90o)
=> AB2+AC2=BC2AB2+AC2=BC2 (ĐL Pi-ta-go)
=> BC2=82+62=100BC2=82+62=100
=> BC=10BC=10cm
b) Vì AB = AD (gt)
mà A ∈∈ BD (gt)
=> A trung điểm BD (ĐN trung điểm)
=> CA trung tuyến BD (ĐN trung tuyến)
lại có: CA ⊥⊥ BD (AB ⊥⊥ AC do Aˆ=90oA^=90o)
=> ΔΔCBD cân tại C (dhnb)
=> BC = CD (ĐN ΔΔ cân)
và CA là phân giác của BCDˆBCD^ (t/c ΔΔ cân)
=> C1ˆ=C2ˆC1^=C2^ (ĐN tia p/g)
Xét ΔΔBEC và ΔΔDEC có:
BC = CD (cmt)
C1ˆ=C2ˆC1^=C2^ (cmt)
EC: cạnh chung
=> ΔΔBEC = ΔΔDEC (c.g.c)
c) Vì CE là trung tuyến của ΔΔBCD (cmt)
mà AEAC=26=13AEAC=26=13 (AE = 2cm, AC = 6cm)
=> E là trọng tâm ΔΔBCD (dhnb)
=> DE là trung tuyến ΔΔBCD (ĐN trọng tâm)
=> DE đi qua trung điểm của BC (ĐN trung tuyến)
Bài 12:
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=8^2+6^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
b) Xét ΔABC vuông tại A và ΔADC vuông tại A có
AC chung
AB=AD(gt)
Do đó: ΔABC=ΔADC(hai cạnh góc vuông)
Suy ra: CB=CD(hai cạnh tương ứng)
Xét ΔEAB vuông tại A và ΔEAD vuông tại A có
EA chung
AB=AD(gt)
Do đó: ΔEAB=ΔEAD(hai cạnh góc vuông)
Suy ra: EB=ED(hai cạnh tương ứng)
Xét ΔCEB và ΔCED có
CE chung
CB=CD(cmt)
EB=ED(cmt)
Do đó: ΔCEB=ΔCED(c-c-c)
a: BC=căn 8^2+6^2=10cm
b: Xét ΔABC có AB>AC
nên góc B<góc C
c: Xét ΔAMN có
AI vừa là đường cao, vừa là trung tuyến
=>ΔAMN cân tại A
d: Xét ΔBCK có
BA vừa là đường cao, vừa là trung tuyến
=>ΔBCK cân tại B
mà BA là đường cao
nên BA là phân giác của góc CBK(1)
Xét ΔBMN có
BI vừa là đường cao, vừa là trung tuyến
=>ΔBMN cân tại B
=>BA là phân giác của góc MBN
=>BA là phân giác của góc CBN(2)
Từ (1), (2) suy ra N,K,B thẳng hàng
a) Áp dụng định lí Py-ta-go cho \(\Delta ABC\)vuông tại A ta được :
\(\Leftrightarrow AB^2+AC^2=BC^2\)
\(\Leftrightarrow8^2+6^2=BC^2\)
\(\Leftrightarrow BC^2=100\)
\(\Leftrightarrow BC=10\left(cm\right)\)
Vậy \(BC=10cm\)
b) Xét \(\Delta CDA\)và \(\Delta CBA\)có :
\(\widehat{DAC}=\widehat{BAC}\left(=90^o\right)\)
\(AD=AB\)
Chung AC
\(\Rightarrow\Delta CDA=\Delta CBA\left(c-g-c\right)\)
\(\Rightarrow\hept{\begin{cases}\widehat{DCE}=\widehat{BCE}\\CD=BC\end{cases}}\)
Xét \(\Delta BEC\)và \(\Delta DEC\)có :
\(CD=BC\)
\(\widehat{DCE}=\widehat{BCE}\)
Chung CE
\(\Rightarrow\Delta BEC=\Delta DEC\left(c-g-c\right)\left(đpcm\right)\)
c) Ta có : \(AE=2cm\)
\(AC=6cm\)
\(\Rightarrow AE=\frac{1}{3}AC\) \(\Rightarrow CE=\frac{2}{3}AC\)
\(\Rightarrow\)CA là trung tuyến \(\Delta BCD\)
\(\Rightarrow\)E là trọng tâm của \(\Delta BCD\)
\(\Rightarrow\)DE đi qua trung điểm của BC ( đpcm )
Vậy ...
Cho mik hỏi là còn cách chứng minh phần c nào khác ko ?
a: BC=căn 8^2+6^2=10cm
b: Xét ΔCAB vuông tại A và ΔCAD vuông tại A có
CA chung
AB=AD
=>ΔCAB=ΔCAD
=>CB=CD và góc ACB=góc ACD
Xét ΔBEC và ΔDEC có
CB=CD
góc BCE=góc DCE
CE chung
=>ΔBEC=ΔDEC(c-g-c)
Xét ΔEDB có
EA vừa là đường cao, vừa là trung tuyến
=>ΔEDB cân tại E
=>ED=EB
Xét ΔCDE và ΔCBE có
CD=CB
DE=BE
CE chung
=>ΔCDE=ΔCBE(c-c-c)
góc CDE+góc EDA=góc CDA
góc CBE+góc EBA=góc CBA
mà góc CDA=góc CBA và góc EDB=góc EBD
nên góc CDE=góc CBE
Xét ΔCEB và ΔCED có
góc CBE=góc CDE
BC=DC
góc BCE=góc DCE
=>ΔCEB=ΔCED
Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc A chung
=>ΔADE đồng dạng với ΔABC
b)ta có AB=AD(giả thiết)
=> CA là đường trung tuyến của BD
CA vuông góc với BD (t/g ABC vuông tại A)
=>CA là đường cao của BD
mà CA là đường trung tuyến của BD(chứng minh trên)
=>t/g BCD cân tại C
=>CA cũng là p/g của t/g ABC
=>góc BCA= góc DCA
Xét t/g BEC và t/g DEC
góc BCA= góc DCA
BC=CD(t/g BCD cân tại C)
EC: cạnh chung
Suy ra t/g BEC= t/g DEC(c-g-c)
c) trên trung tuyến CA có CE/AC=6-2/6=2/3
=>ba đường trung tuyến của t/g BCD đồng quy tại E
=>DE là đường trung tuyến của BC
=>DE đi qua trung điểm BC