Cho tam giác ABC . Trên cạnh BC lấy điểm M ; trên cạnh AB lấy điểm N sao cho BM = MC và AN = NB . Nối AM và CN cắt nhau tại O . Biết AM = 24cm . Tính đọ dài đoạn OA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M P N 7cm^2
Giải: Do BP = PM
Mà BP + PM = BM
=> BP = PM = 1/2BM
Ta có: St/giác BNP = 1/2x (BN x BP)
hay 1/2 x (1/2BM x 1/3BC) = 7
=> 1/2 x 1/6 BM x BC = 7
=> 1/2 x BM x BC = 7 : 1/6
=> 1/2 x BM x BC = 42
=> St/giác BMC = 42 cm2
Do AM = MC và AM + MC = AC
=> AM = MC = 1/2AC
Xét t/giác ABC và t/giác MBC
có MC = 1/2AC
BC : chung
=> St/giác MBC = 1/2St/giác ABC
=> 42 cm2 = 1/2St/giác ABC
=> St/giác ABC = 42 : 1/2 = 84 (cm2)
mong các bạn làm bạn với mình vì mình không có nhiều bạn
^-^ cảm ơn các bạn rất nhiều ^-^
b: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: CD//AB
\(BM=\dfrac{1}{2}BC\)
mà M nằm giữa B và C
nên M là trung điểm của BC
=>\(CM=\dfrac{1}{2}BC\)
=>\(S_{ACM}=\dfrac{1}{2}\cdot S_{ABC}=30\left(cm^2\right)\)
\(AN=\dfrac{3}{4}AC\)
=>\(S_{AMN}=\dfrac{3}{4}\cdot S_{ACM}=22,5\left(cm^2\right)\)
a: BC^2=AB^2+AC^2
=>ΔABC vuông tại A
Xét ΔNBM và ΔABC có
BN/BA=BM/BC
góc B chung
=>ΔNBM đồng dạng với ΔABC
b: ΔNBM đồng dạng với ΔABC
=>NM/AC=BM/BC
=>NM/4=2,5/5=1/2
=>NM=2cm
Trước tiên, ta có BM = BC theo đề bài. Vì tam giác ABC vuông tại A, nên ta có góc BAC = 90 độ.
Tiếp theo, ta biết rằng phân giác tam giác ABC cắt AC tại K. Vì vậy, ta có góc BAK = góc CAK.
Tương tự, phân giác tam giác ABC cắt MC tại I, nên ta có góc BAM = góc CAM.
Vì CN = MA, nên ta có góc CAN = góc CMA.
Từ các quan sát trên, ta có thể thấy rằng góc BAK = góc BAM = góc CAN = góc CMA.
Vì vậy, ta có thể kết luận rằng K, M, N thẳng hàng.
BN+NC=BC
BA+AM=BM
mà BC=BM và NC=AM
nên BN=BA
Xét ΔBAK và ΔBNK có
BA=BN
góc ABK=góc NBK
BK chung
Do đó: ΔBAK=ΔBNK
=>góc BNK=90 độ và KA=KN
Xét ΔKAM vuông tại A và ΔKNC vuông tại N có
KA=KN
AM=NC
Do đó; ΔKAM=ΔKNC
=>góc AKM=góc NKC
=>góc AKM+góc AKN=180 độ
=>K,M,N thẳng hàng
BM=MC => AM là đường trung tuyến của tam giác ABC
AN=NB => CN là đường trung tuyến của tam giác ABC
AM cắt CN tại O => O là trọng tâm của tam giác ABC => \(AO=\frac{2}{3}AM=\frac{2}{3}.24=16\left(cm\right)\)
A B C M N O
Nối B với O
SOCM = SOMB (BM = MC ; chung đường cao hạ từ O)
SCNB = SACN (AN = NB ; chung đường cao hạ từ C) .
SONB = SAON . SAON = \(\frac{1}{2}\)SABC - SONMB. SOMC = \(\frac{1}{2}\)SABC - SONMB
=> SAON = SOMC ; SOMC = \(\frac{1}{6}\)SABC và SACO
=> độ dài đoạn OA = \(24\times\left(\frac{1}{2}+\frac{1}{6}\right)=16\left(cm\right)\)