Cho góc yOz và Góc xOy là hai góc kề bù; góc xOy = 120° a) vẽ tia ot là tia phân giác của góc yOz. Tính góc tOz b) vẽ tia ot' là tia phân giác của góc xOy . Tính góc yOt'; tOt'
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Cách 1: Vì 2 góc có chung gốc O, chung cạnh Oy, 2 cạnh còn lại là Ox và Oz nằm về hai phía đối với đường thẳng chứa tia Oy nên hai góc xOy và yOz là hai góc kề nhau. Hơn nữa, hai góc xOy và yOz có tổng bằng góc xOz =180 độ nên hai góc xOy và yOz là hai góc bù nhau.
Vậy hai góc xOy và yOz là hai góc kề bù
Cách 2: Vì 2 góc có chung gốc O, chung cạnh Oy, 2 cạnh còn lại là Ox và Oz là hai tia đối nhau nên hai góc xOy và yOz là hai góc kề bù.
b) Cách 1: Vì 2 góc có chung gốc O, chung cạnh Oz, 2 cạnh còn lại là Oy và Ot nằm về hai phía đối với đường thẳng chứa tia Oz nên hai góc yOz và zOt là hai góc kề nhau. Hơn nữa, hai góc yOz và zOt có tổng bằng góc xOz =180 độ nên hai góc yOz và zOt là hai góc bù nhau.
Vậy hai góc yOz và zOt là hai góc kề bù
Cách 2: Vì 2 góc có chung gốc O, chung cạnh Oz, 2 cạnh còn lại là Oy và Ot là hai tia đối nhau nên hai góc yOz và zOt là hai góc kề bù.
c) Do
\(\begin{array}{l}\widehat {xOy} + \widehat {yOz} = \widehat {xOz} = 180^\circ ;\\\widehat {yOz} + \widehat {zOt} = \widehat {yOt} = 180^\circ \end{array}\)
Vậy \(\widehat {xOy} + \widehat {yOz} = \widehat {yOz} + \widehat {zOt}\)
\( \Rightarrow \widehat {xOy} = \widehat {zOt}\)
Chú ý: Ta có thể dùng dấu hiệu sau: 2 góc kề bù khi có chung đỉnh, chung một cạnh, 2 cạnh còn lại là 2 tia đối nhau.
Ta có : \(\widehat{xOy}+\widehat{yOz}=180^0\)(hai góc kề bù)
Mà \(\widehat{yOz}=2\widehat{xOy}\)
=> \(\widehat{xOy}+2\widehat{xOy}=180^0\)
=> \(3\widehat{xOy}=180^0\)
=> \(\widehat{xOy}=60^0\)
Theo đề bài có \(\widehat{yOz}=2\widehat{xOy}\Leftrightarrow\widehat{yOz}=2\cdot60^0=120^0\)
Vậy : ...
Vì \(\widehat{xOy}\)và \(\widehat{yOz}\)là 2 góc kề bù \(\Rightarrow\widehat{xOy}+\widehat{yOz}=180^o\)
mà \(\widehat{yOz}=2.\widehat{xOy}\)
\(\Rightarrow\widehat{xOy}+2.\widehat{xOy}=180^o\)\(\Rightarrow3.\widehat{xOy}=180^o\)\(\Rightarrow\widehat{xOy}=60^o\)
\(\Rightarrow\widehat{yOz}=180^o-60^o=120^o\)
Vậy \(\widehat{xOy}=60^o\)và \(\widehat{yOz}=120^o\)
vì xOy và yOz là hai góc kề bù
=> xOy + yOz = 180 độ
Mà yOz = 1/5 xOy
Thay vào , ta được :
xOy + 1/5 xOy = 180 độ
xOy . ( 1 + 1/5 ) = 180 độ
xOy . 6/5 = 180 độ
xOy = 180 độ : 6/5
xOy = 150
góc mOn=góc mOy+góc nOy
=1/2*(góc xOy+góc yOz)=90 độ
Giải
Góc xOy và yOz là 2 góc kề bù
=>xÔy+ yÔz=180o(kề bù)
=>xÔy= yÔz=180o:2=90o
Vì tia Ot là tia phân giác của góc xOy
=>xÔt+tÔy=xÔy
=>xÔt=tÔy=90o:2=45o
Vì tia Ot' là tia phân giác của góc yOz
=>zÔt'+t'Ôy=zÔy
=>zÔt'=t'Ôy=90o:2=45o
Vì 2 tia Ot và Ot' thuộc 2 nửa mặt phẳng đối nhau bờ Oy
=>Tia Oy nằm giữa 2 tia Ot và Ot'
=>tÔy+ yÔt' =tÔt'
=>tÔt'=45o+45o=90o