K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2021

a: Xét ΔABC có

M là trung điểm của AC

N là trung điểm của AB

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//BC

hay BMNC là hình thang

12 tháng 10 2021

a: Xét ΔABC có

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//BC và \(MN=\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)

12 tháng 10 2021

a)Vì M là trung điểm của AB, N là trung điểm của AC=>MN là đường trung bình của tam ΔABC=>MN=1/2 BC mà BC = 10cm nên MN = 5cm

b)Vì MN là đường trung bình của tam ΔABC=>MN//BC=> Tứ giác BMNC là hình thang

c)Theo đề bài ta có  ΔABC cân tại A => Góc B=C => Tứ giác BMNC là hình thang cân

 

30 tháng 8 2021

Hình vẽ minh hoạ undefined

30 tháng 8 2021

a. Ta có: AD = AB 

=> \(\Delta ABD\) là tam giác cân

=> Góc ADB = góc ABD (1)

Mà góc ABD = góc BDC (so le trong) (2)

Từ (1) và (2), suy ra:

BD là tia phân giác của góc ADC

b. Nối AC

Xét 2 tam giác ABC và ABD có:

AD = BC (gt)

AB chung

=> \(\Delta ABD\sim\Delta ABC\) (1)

Ta có: AD = AB = BC (2)

Từ (1) và (2), suy ra: \(\Delta ABD=\Delta ABC\)

=> Góc A = góc B

Ta có: AB//CD

=> Góc D + góc A = 90o (2 góc trong cùng phía)

Mà góc A = góc B

=> Góc C = góc D

=> ABCD là hình thang cân

19 tháng 9 2021

THAM KHẢO Ạ :3

undefined

CHÚC BẠN HỌC TỐT NHÉhaha

19 tháng 9 2021

Ui cảm ơn b nhìu nhaa

 

19 tháng 6 2015

a, Gọi AC giao BD tai O 

TAm giác OAB có

 OA + OB > AB (1)

Tam giác OCD có

 OC + OD > CD (2)

cộng vế với vế của (1) và (2) -=> AC + BD > AB + CD

18 tháng 8 2017

Mình cũng đồng ý với ý kiến của bạn

2 tháng 8 2019

Giải bài 3 trang 7 sgk Hình học 10 | Để học tốt Toán 10

Giải bài 3 trang 7 sgk Hình học 10 | Để học tốt Toán 10

1 tháng 2 2017

bài 1 mk đã giải cho bạn kiên trần cách giải bài đó cũng như bài này nên bạn xem chỗ bạn kiên trần nhé!

1 tháng 2 2017

bài 2 theo mk là làm như thế này !

à mà bạn tự vẽ hình nhé!!!

Trong tứ giác ABCD , từ đỉnh A kẻ AH \(\perp\)DC , từ đỉnh B kẻ BG \(\perp\)DC.

Xét \(\Delta\)vuông ADH và \(\Delta\) vuông BCG có:

AD = BC ( đề cho)

góc D = góc C ( đề cho )

=> \(\Delta\)vuông ADH = \(\Delta\)vuông BCG ( cạnh huyền - góc nhọn )

=> AH = BG

mặt khác AH // BG ( cùng \(\perp\) BC )

=> Tứ giác ABGH là hình bình hành

=> AB // HG hay AB // DC

Tứ giác ABCD có góc D = góc C và AB // DC

=> ABCD là hình thang cân ( đpcm)

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) \(N\), \(E\) lần lượt là trung điểm của \(AC\) và \(BC(gt)\); Suy ra \(NE\) là đường trung bình của tam giác \(ABC\).

Suy ra \(NE\) // \(AB\)

Suy ra tứ giác \(ANEB\) là hình thang.

Mà \(\widehat {NAB} = 90^\circ \) (do \(\Delta ABC\) vuông tại \(A\))

Do đó tứ giác \(ANEB\) là hình thang vuông.

b) \(M\), \(E\) lần lượt là trung điểm của \(AB\) và \(BC\) (gt);

Suy ra \(ME\) là đường trung bình của \(\Delta ABC\)

Suy ra \(ME\) // \(AC\) hay \(ME\) // \(AN\)

Mà  \(AM\) // \(NE\) (do \(AB\) // \(NE\))

Suy ra tứ giác \(AMEN\) là hình bình hành

Mà \(\widehat {{\rm{MAN}}} = 90^\circ \) nên \(AMEN\) là hình chữ nhật

c) Xét tứ giác \(BMFN\) có: \(MF\) // \(BN\) (gt) và \(BM\) // \(FN\) (do \(AB\) // \(NE\))

Suy ra \(BMFN\) là hình bình hành

Suy ra \(BM = FN\)

Mặt khác \(NE = AM\) (Tứ giác \(ANEM\) là hình chữ nhật) và \(AM = BM\)

Suy ra \(FN = NE\)

Tứ giác \(AFCE\) có \(N\) là trung điểm của \(AC\) và \(EF\)

Suy ra \(AFCE\) là hình bình hành

Mà \(AC \bot EF\)

Do đó \(AFCE\) là hình thoi

d) Xét tứ giác \(ADBE\) ta có: \(DE\) và \(AB\) cắt nhau tại \(M\) (gt)

Mà \(M\) là trung điểm của \(AB\) (gt)

\(M\) là trung điểm của \(DE\) (do \(D\) đối xứng với \(E\) qua \(M\))

Suy ra \(ADBE\) là hình bình hành

Suy ra \(AD\) // \(BE\) hay \(AD\) // \(EC\)

Mà \(AF\) // \(EC\)  (do \(AECF\) là hình thoi)

Suy ra \(A,D,F\) thẳng hàng (1)

Mà \(ADBE\) là hình bình hành

Suy ra \(BE\) // \(AD\)

Mà \(AF = EC\) (do \(AFCE\) là hình thoi); \(EB = EC\) (gt)

Suy ra \(AD = AF\)(2)

Từ (1) và (2) suy ra \(A\) là trung điểm của \(DF\)