Không làm phép chia, tìm phần dư trong đa thức f(x) cho đa thức g(x) trong:f(x)=2x+2x2+2x4+x6+x8+x10-99 ; g(x)=x2+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)
\(=2x^2-3x+1\)
Bài 1:
a: \(=\dfrac{2x^4-8x^3+2x^2+2x^3-8x^2+2x+18x^2-72x+18+56x-15}{x^2-4x+1}\)
\(=2x^2+2x+18+\dfrac{56x-15}{x^2-4x+1}\)
a: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)
\(=2x^2-3x+1\)
\(a,f\left(x\right):g\left(x\right)=\left[\left(x-5\right)\left(x^3+2\right)\right]:\left(x-5\right)=x^3+2\\ \Rightarrow\text{Dư }0\\ b,f\left(x\right):g\left(x\right)=\left(8x^2-4x-2x+1+4\right):\left(2x-1\right)\\ =\left[4x\left(2x-1\right)-\left(2x-1\right)+4\right]:\left(2x-1\right)\\ =4x-1\left(\text{dư }4\right)\)
b: \(=\dfrac{8x^2-4x-2x+1+4}{2x-1}=4x-1+\dfrac{4}{2x-1}\)
Rõ ràng đa thức \(x^3-1\) chia hết cho đa thức \(x^2+x+1\).
Ta tách: \(x^9+x^6+x^3+1=\left(x^9-1\right)+\left(x^6-1\right)+\left(x^3-1\right)+4=\left(x^3-1\right)\left(x^6+x^3+1\right)+\left(x^3-1\right)\left(x^3+1\right)+\left(x^3-1\right)+4\).
Từ đây suy ra đa thức đó chia cho đa thức \(x^2+x+1\) được đa thức dư là 4.
Do đa thức chia có bậc 2
nên đa thức dư là nhị thức bậc nhất
Đặt đa thức dư là \(ax+b\)
Đa thức thương là \(Q_{\left(x\right)}\)
\(\Rightarrow x+x^5+x^{10}+x^{20}=\left(x^2-1\right)Q_{\left(x\right)}+ax+b\\ \Leftrightarrow\left(x+1\right)\left(x-1\right)Q_{\left(x\right)}+ax+b\)
Đẳng thức trên luôn đúng \(\forall x\)
nên lần lượt cho \(x=1;x=-1\)
\(\text{Ta được : }\left\{{}\begin{matrix}a+b=4\\b-a=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\dfrac{4-0}{2}\\b=\dfrac{4+0}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=2\\b=2\end{matrix}\right.\)
\(\Rightarrow ax+b=2x+2\)
Vậy số dư trong phép chia \(f_{\left(x\right)};g_{\left(x\right)}\)
là \(2x+2\)
d: Ta có: f(x):g(x)
\(=\dfrac{x^3-2x^2+3x+5}{x+1}\)
\(=\dfrac{x^3+x^2-3x^2-3x+6x+6-1}{x+1}\)
\(=x^2-3x+6+\dfrac{-1}{x+1}\)
Để f(x) chia hết cho g(x) thì \(x+1\in\left\{1;-1\right\}\)
hay \(x\in\left\{0;-2\right\}\)