K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2019

Hàm số f(x) = \(\frac{\left(x+2\right)}{\left(x-1\right)}\)

b) Thay x = -3 vào hàm số f(x), ta được:

f(-3) = \(\frac{\left[\left(-3\right)+2\right]}{\left[\left(-3\right)-1\right]}\)

f(-3) = \(\frac{-1}{-4}\)

f(-3) = \(\frac{1}{4}\)

Vậy giá trị của hàm số f(x) tại x = -3 là \(\frac{1}{4}\).

+ Thay x = 7 vào hàm số f(x), ta được:

f(7) = \(\frac{\left(7+2\right)}{\left(7-1\right)}\)

f(7) = \(\frac{9}{6}\)

f(7) = \(\frac{3}{2}\)

Vậy giá trị của hàm số f(x) tại x = 7 là \(\frac{3}{2}\).

Chúc bạn học tốt!

14 tháng 11 2018

a)  x khác 1

b) f(7)=\(\frac{3}{2}\)

c)\(\frac{x+2}{x-1}\)=\(\frac{1}{4}\)<=> 4(x+2)=x-1<=>x=-3

d) f(x)=\(\frac{x+2}{x-1}\)=\(\frac{x-1+3}{x-1}\)= 1+\(\frac{3}{x-1}\)

f(x) có giá trị nguyên <=> x-1 thuộc Ư(3) <=> x-1 thuộc {+1;+3}

         

x-1-113-3
x024-2

e) f(x)>1 <=> 1+\(\frac{3}{x-1}\)> 1 <=> \(\frac{3}{x-1}\)> 0 <=> x-1 >0 <=> x>1

    
     
24 tháng 12 2021

a: f(-3)=10

f(0)=-8

f(1)=-6

f(2)=0

b: f(x)=0

=>(x-2)(x+2)=0

=>x=2 hoặc x=-2

21 tháng 4 2016

a/ để vế phải có nghĩa thì x-1>0 nên x>1

21 tháng 4 2016

Dễ thế còn gì

2 tháng 11 2019

\(f\left(x\right)=\left|x-2015\right|+\left|x+2016\right|\)

a) Ta có: \(\left|x\right|=\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\)

+) Với \(x=\frac{1}{2}\)

\(f\left(\frac{1}{2}\right)=\left|\frac{1}{2}-2015\right|+\left|\frac{1}{2}+2016\right|=2\)

+) Với \(x=-\frac{1}{2}\)

\(f\left(-\frac{1}{2}\right)=\left|-\frac{1}{2}-2015\right|+\left|-\frac{1}{2}+2016\right|=0\)

2 tháng 11 2019

c) Áp dụng BĐT |x| + |y| \(\ge\)|x + y|, ta được:

\(f\left(x\right)=\left|x-2015\right|+\left|x+2016\right|=\left|2015-x\right|+\left|x+2016\right|\)

\(\ge\left|\left(2015-x\right)+\left(x+2016\right)\right|=\left|4031\right|=4031\)

(Dấu "="\(\Leftrightarrow\left(2015-x\right)\left(x+2016\right)\ge0\)

TH1: \(\hept{\begin{cases}2015-x\ge0\\x+2016\ge0\end{cases}}\Leftrightarrow-2016\le x\le2015\)

TH2: \(\hept{\begin{cases}2015-x\le0\\x+2016\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2015\\x\le-2016\end{cases}}\left(L\right)\))

Vậy \(f\left(x\right)_{min}=4031\Leftrightarrow-2016\le x\le2015\)