K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2019

a)      \(y=f\left(x\right)=-\frac{1}{2}x\)

\(f\left(-2\right)=-\frac{1}{2}.\left(-2\right)=1\)

\(f\left(3\right)=-\frac{1}{2}.3=-\frac{3}{2}\)

b)

Cho \(x=1\Rightarrow y=-\frac{1}{2}.1=-\frac{1}{2}\)

                   \(\Rightarrow A\left(1;-\frac{1}{2}\right)\)

O 1 2 1 2 -1 -2 -1 -2 -1/2 A y=-1/2x

Hình ko đẹp lắm mong cậu thông cảm

30 tháng 6 2015

\(\text{1)}\)

\(\text{Thay }x=-2,\text{ ta có: }f\left(-2\right)-5f\left(-2\right)=\left(-2\right)^2\Rightarrow f\left(-2\right)=-1\)

\(\Rightarrow f\left(x\right)=x^2+5f\left(-2\right)=x^2-5\)

\(f\left(3\right)=3^2-5\)

\(\text{2)}\)

\(\text{Thay }x=1,\text{ ta có: }f\left(1\right)+f\left(1\right)+f\left(1\right)=6\Rightarrow f\left(1\right)=2\)

\(\text{Thay }x=-1,\text{ ta có: }f\left(-1\right)+f\left(-1\right)+2=6\Rightarrow f\left(-1\right)=2\)

\(\text{3)}\)

\(\text{Thay }x=2,\text{ ta có: }f\left(2\right)+3f\left(\frac{1}{2}\right)=2^2\text{ (1)}\)

\(\text{Thay }x=\frac{1}{2},\text{ ta có: }f\left(\frac{1}{2}\right)+3f\left(2\right)=\left(\frac{1}{2}\right)^2\text{ (2)}\)

\(\text{(1) - 3}\times\text{(2) }\Rightarrow f\left(2\right)+3f\left(\frac{1}{2}\right)-3f\left(\frac{1}{2}\right)-9f\left(2\right)=4-\frac{1}{4}\)

\(\Rightarrow-8f\left(2\right)=\frac{15}{4}\Rightarrow f\left(2\right)=-\frac{15}{32}\)

17 tháng 4 2016

sai 1 chút chỗ cÂU 3

nhân vs 3 thì phải là 1/12

19 tháng 12 2020

a/ Thay x =0 vào hàm số f(x) = 2x2 - 10 ta có

f(0) = 2 . 0 - 10 = -10

Thay x = 1 vào hàm số f(x) = 2x2 - 10 ta có

f(1) = 2 . 12 - 10 = 2 - 10 = -8

Thay \(x=-1\dfrac{1}{2}=-\dfrac{3}{2}\)vào hàm số f(x) ta có

\(f\left(-1\dfrac{1}{2}\right)=2.\left(-\dfrac{3}{2}\right)^2-10=\dfrac{9}{2}-\dfrac{20}{2}=-\dfrac{11}{2}\)

b/ f(x) = -2

\(\Leftrightarrow2x^2=8\)

\(\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\)

22 tháng 9 2023

a)

\(\begin{array}{l}f'\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\frac{1}{2}{x^2} - \frac{1}{2}}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\frac{1}{2}\left( {{x^2} - 1} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\frac{1}{2}\left( {x - 1} \right)\left( {x + 1} \right)}}{{x - 1}}\\ = \mathop {\lim }\limits_{x \to 1} \frac{1}{2}\left( {x + 1} \right) = \frac{1}{2}\left( {1 + 1} \right) = 1\end{array}\)

b) Phương trình đường thẳng \(d\) đi qua điểm \(M\left( {1;\frac{1}{2}} \right)\) và có hệ số góc bằng \(k = f'\left( 1 \right) = 1\) là: \(y - \frac{1}{2} = 1\left( {x - 1} \right) \Leftrightarrow y = x - 1 + \frac{1}{2} \Leftrightarrow y = x - \frac{1}{2}\).

 

Đường thẳng \(d\) cắt đồ thị hàm số \(\left( C \right)\) tại duy nhất điểm \(M\left( {1;\frac{1}{2}} \right)\).

14 tháng 12 2021

Bài 1:

\(f\left(-x\right)=\left|\left(-x\right)^3+x\right|=\left|-x^3+x\right|=\left|-\left(x^3-x\right)\right|=\left|x^3-x\right|=f\left(x\right)\)

Vậy hàm số chẵn

Bài 2:

\(f\left(4\right)=4-3=1\\ f\left(-1\right)=2.1+1-3=0\\ b,\text{Thay }x=4;y=1\Leftrightarrow4-3=1\left(\text{đúng}\right)\\ \Leftrightarrow A\left(4;1\right)\in\left(C\right)\\ \text{Thay }x=-1;y=-4\Leftrightarrow2\left(-1\right)^2+1-3=-4\left(\text{vô lí}\right)\\ \Leftrightarrow B\left(-1;-4\right)\notin\left(C\right)\)

4 tháng 3 2016

Bài 1 có nhiều giá trị mà?

4 tháng 3 2016

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{\left|x-5\right|}{\left|x-3\right|}=\frac{\left|x-1\right|}{\left|x-3\right|}=\frac{\left|x-5\right|-\left|x-1\right|}{\left|x-3\right|-\left|x-3\right|}=\frac{\left|x-5\right|-\left|x-1\right|}{0}\)

Do đó không tồn tại x thỏa mãn.

23 tháng 3 2019

a) \(f\left(\frac{-1}{2}\right)\) 

Thay x = -1/2 vào ta được: \(y=f\left(\frac{-1}{2}\right)=\left(\frac{-1}{2}\right)^2-5.\left(\frac{-1}{2}\right)+1=\frac{15}{4}\)

\(f\left(3\right)\)

Thay x = 3 vào ta được: \(y=f\left(3\right)=3^2-5.3+1=-5\)

b) Để f(x) = 1

Suy ra: \(x^2-5x+1=1\)

\(\Leftrightarrow x^2-5x=0\)

\(\Leftrightarrow x\left(x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)

Vậy khi x = 0 hoặc x = 5 thì f(x) = 1

23 tháng 3 2019

A(1;3);B(-1;7)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Đặt \(h\left( x \right) = f\left( x \right) + g\left( x \right) = \frac{1}{{x - 1}} + \sqrt {4 - x} \). Ta có:

\(\begin{array}{l}h\left( 2 \right) = \frac{1}{{2 - 1}} + \sqrt {4 - 2}  = 1 + \sqrt 2 \\\mathop {\lim }\limits_{x \to 2} h\left( x \right) = \mathop {\lim }\limits_{x \to x} \left( {\frac{1}{{x - 1}} + \sqrt {4 - x} } \right) = \frac{1}{{2 - 1}} + \sqrt {4 - 2}  = 1 + \sqrt 2 \end{array}\)

Vì \(\mathop {\lim }\limits_{x \to 2} h\left( x \right) = h\left( 2 \right)\) nên hàm số \(y = f\left( x \right) + g\left( x \right)\) liên tục tại \(x = 2\).