\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB // KE b) ABC = KEC ; BC = CE Bài 3. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D sao cho OA = OB, AC = BD. a) Chứng minh: AD = BC. b) Gọi E là giao điểm AD và BC. Chứng minh: EAC = EBD c) Chứng minh: OE là phân giác của góc xOy, OE CD Bài 4. Cho ABC coù BÂ=900, gọi M là trung điểm của BC. Trên tia đối của tia AM lấy điểm E sao cho ME = MA. a) Tính BCE b) Chứng minh BE // AC. Bài 5. Cho ABC, lấy điểm D thuộc cạnh BC ( D không trùng với B,C). Gọi Mlà trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME= MB, trên tia đối của tia MC lấy điểm F sao cho MF= MC. Chứng minh rằng: a) AME = DMB; AE // BC b) Ba điểm E, A, F thẳng hàng c) BF // CE Bài 6: Cho có B = C , kẻ AH BC, H BC . Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh: a) AB = AC b) ABD = ACE c) ACD = ABE d) AH là tia phân giác của góc DAE e) Kẻ BK AD, CI AE. Chứng minh ba đường thẳng AH, BK, CI cùng đi qua một điểm. \)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác AOM và tam giác BOM có:
AO = BO (gt)
AOM = BOM (OM là tia phân giác của AOB)
OM chung
=> Tam giác AOM = Tam giác BOM (c.g.c)
=> AM = BM (2 cạnh tương ứng)
=> M là trung điểm của AB
=> OM là đường trung tuyến của tam giác OAB cân tại O (OA = OB)
=> OM là đường trung trực của tam giác OAB cân tại O
=> OM _I_ AB
Tam giác NAB có NA vừa là đường cao, vừa là đường trung trực
=> Tam giác NAB cân tại N
=> NA = NB
like mik nha
chúc bạn học tốt!
hình bạn tự vẽ đc ko ( nếu vẽ ko đc gửi tin mik biết nhé )
a) xét tam giác OAM và tam giác OBM có
OM cạnh chung
O1 = O2 ( vì Ot là tia phân giác )
OA = OB ( gt )
=> tam giác OAM = tam giác OBM ( c.g.c )
b) vì tam giác OAM = tam giác OBM
=> AM = BM ( cạnh tương ứng )
=> góc AMO = góc OBM ( góc tương ứng )
=> OM vuông góc với AB
C) xét tam giác ANO và tam giác BNO có
ON cạnh chung
OA = OB ( gt )
O1 = O2 ( Vì Ot là tia phân giác )
=> tam giác ANO = tam giác BNO ( c.g.c )
=> NA = NB ( cạnh tương ứng )
có j ko hiểu hỏi lại nka
t-i-c-k mik nka !!
a: Xét ΔOAM và ΔOBM có
OA=OB
\(\widehat{AOM}=\widehat{BOM}\)
OM chung
Do đó: ΔOAM=ΔOBM
a, Xét tam giác OAM và tam giác OBM có:
OA = OB (gt)
Góc AOM = góc BOM
OM chung
=> tam giác OAM = tam giác OBM
b, tam giác OAM = tam giác OBM ( câu a )
=> AM = BM
GÓC BMO = GÓC AMO
Mà góc BMO + góc AMO = 180 độ
=> OM vuông góc với AB
c, Từ câu b ta có OM là trung trực của AB
d, Xét tam giác MNB và tam giác MNA có:
MB = MA
góc BMN = góc AMN ( 90 độ)
MN chung
=> tam giác MNB = tam giác MNA
=> NA = NB
a) xét tam giác OAM và tam giác OBM có:
OB=OA(gt)
góc BOM= góc MOA(Ot là tia phân giác của góc xOy)
OM:cạnh chung
⇒tam giác OAM= tam giác OBM(c.g.c)
b)vì tam giác OAM= tam giác OBM(câu a)
⇒AM=BM(2 cạnh tương ứng)
⇒góc OMB= góc OMA(2 góc tương ứng)
Mà hóc OMB+góc OMA=180o(kề bù)
⇒góc OMB=góc OMA=180o:2=90o
⇒OM vuông góc với AB
Tự mà làm lấy
chịu. nhình rối hết cả mắt @-@