K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2017

Bạn ơi

Sai đề rồi

27 tháng 1 2022

\(1,\left(ac+bd\right)^2+\left(ad-bc\right)^2\\ =a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\\ =a^2c^2+b^2d^2+a^2d^2+b^2c^2\\ =\left(a^2c^2+a^2d^2\right)+\left(b^2d^2+b^2c^2\right)\\ =a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\\ =\left(a^2+b^2\right)\left(c^2+d^2\right)\)

2, \(\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\)

\(\Leftrightarrow a^2c^2+b^2c^2+a^2d^2+b^2d^2\ge a^2c^2+2abcd+b^2d^2\)

\(\Leftrightarrow b^2c^2-2abcd+a^2d^2\ge0\)

\(\Leftrightarrow\left(bc-ad\right)^2\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow bc=ad\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\)

27 tháng 1 2022

\(1\)

⇔ \(\left(ac\right)^2+2abcd+\left(bd\right)^2+\left(ad\right)^2-2abcd+\left(bc\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

\(a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

\(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(a^2+b^2\right)\left(c^2+d^2\right)\) ⇒ \(\left(dpcm\right)\)

\(2\)/

\(\left(ac\right)^2+\left(ad\right)^2+\left(bc\right)^2+\left(bd\right)^2\ge\left(ac\right)^2+2abcd+\left(bd\right)^2\)

\(\left(ad\right)^2-2abcd+\left(bc\right)^2\ge0\)

\(\left(ad-bc\right)^2\ge0\left(đúng\right)\)

28 tháng 1 2023

Nếu \(c^2+d^2\ge1\left(bất.đẳng.thức.đúng\right)\)

Ta chứng minh c2+d2<1

+Đặt x=1-a2-bvà y =1-c- d2

-0 \(\le x,y\le1\)

Bđt <=> (2 - 2ac - 2bd)2\(\ge\) 4xy <=> ((a-c)2+(b-d)2+x+y)2\(\ge4xy\)

=> ((a-c)2+(b-d)2 + x + y)2 \(\ge\left(x+y\right)^2\ge4xy\left(đpcm\right)\)

28 tháng 1 2023

bạn có thể giải thích không ạ 

24 tháng 6 2021

45ubyu

a: \(VT=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)

\(=a^2c^2+a^2d^2+b^2d^2+b^2c^2\)

\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)

\(=\left(c^2+d^2\right)\left(a^2+b^2\right)\)

b: Bạn ghi lại đề đi bạn

a: \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

\(=a^2c^2+b^2d^2-2abcd+a^2d^2-2abcd+b^2c^2\)

\(=a^2c^2+a^2d^2+b^2d^2+b^2c^2\)

\(=\left(c^2+d^2\right)\left(a^2+b^2\right)\)

b: \(\left(ac+bd\right)^2< =\left(a^2+b^2\right)\left(c^2+d^2\right)\)

\(\Leftrightarrow a^2c^2+2abcd+b^2d^2-a^2c^2-a^2d^2-b^2c^2-b^2d^2< =0\)

\(\Leftrightarrow-a^2d^2+2abcd-b^2c^2< =0\)

\(\Leftrightarrow\left(ad-bc\right)^2>=0\)(luôn đúng)

18 tháng 2 2022

a) \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

\(=a^2c^2+2abcd+b^2d^2+a^2d^2-2adbc+b^2c^2\)

\(=a^2c^2+b^2d^2+a^2d^2+b^2c^2\)

\(=\left(a^2c^2+a^2d^2\right)+\left(b^2d^2+b^2c^2\right)\)

\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)

\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

b) \(\left(a^2+b^2\right)\left(c^2+d^2\right)-\left(ac+bd\right)^{^2}\)

\(=a^2c^2+a^2d^2+b^2c^2+b^2d^2-a^2c^2-2abcd-b^2d^2\)

\(=a^2d^2+b^2c^2-2abcd\)

\(=\left(ad\right)^2-2ad.bc+\left(bc\right)^2\)

\(=\left(ad-bc\right)^2\ge0\)

\(=\left(ac+bd\right)^2\le\left(a^2+b^2\right)\left(c^2+d^2\right)\)

15 tháng 11 2021

\(1.a,\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

\(=\left(ac\right)^2+2abcd+\left(bd\right)^2+\left(ad\right)^2-2abcd+\left(bc\right)^2\)

\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

\(b,\left(ac+bd\right)^2\le\left(a^2+b^2\right)\left(c^2+d^2\right)\)

\(\Leftrightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)-\left(ad-bc\right)^2\le\left(a^2+b^2\right)\left(c^2+d^2\right)\)

\(\Leftrightarrow-\left(ad-bc\right)^2\le0\left(luôn-đúng\right)\)

\(dấu"='\) \(xảy\) \(ra\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

\(c2:x+y=2\Rightarrow\left(x+y\right)^2=4\)

\(\Rightarrow\left(x+y\right)^2+\left(x-y\right)^2\ge4\)

\(\Leftrightarrow x^2+2xy+y^2+x^2-2xy+y^2\ge4\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge4\Leftrightarrow x^2+y^2\ge2\)

\(dấu"="\) \(xảy\) \(ra\Leftrightarrow x=y=1\)

15 tháng 11 2021

Câu 1:

a)Ta có (ac+bd)2+(ad-bc)2=(ac)2+2abcd+(bd)2+(ad)2-2abcd+(bc)2

                                          =(ac)2+(bd)2+(ad)2+(bc)2

                                          =a2(c2+d2)+b2(c2+d2)

                                          =(a2+b2)(c2+d2) (đpcm)

b)Ta có (ac+bd)2 = (ac)2+2abcd+(bd)2

Lại có (a2+b2)(c2+d2) = (ac)2+(bd)2+(ad)2+(bc)2

Ta có (ac+bd)≤  (a2+b2)(c2+d2

<=>(a2+b2)(c2+d2) - (ac+bd)2 ≥ 0

<=>(ac)2+(bd)2+(ad)2+(bc)2-[(ac)2+2abcd+(bd)2]

<=>(ad)2 - 2abcd +(bc)2 ≥ 0

<=>(ad-bc)2 ≥ 0 (Luôn đúng) => đpcm

Câu 2:

Áp dụng BĐT Bunhiacôpxki, ta có (x+ y)2 ≤ (x2 + y2)(12 + 12) => 4  2.S => 2  S

Dấu ''='' xảy ra <=> x=y=1

Vậy Min S=2 <=> x=y=1

3 tháng 8 2021

undefined

hok

tốt 

nha

11 tháng 2 2022

a) Ta có (ac+bd)2+(adbc)2=a2c2+2acbd+b2d2+a2d22adbc+b2c2

=(a2c2+b2c2)+(a2d2+b2d2)=c2(a2+b2)+d2(a2+b2)=(a2+b2)(c2+d2)

b) Ta có 0(adbc)2(ac+bd)2(ac+bd)2+(adbc)2

Mà theo câu a, ta có (ac+bd)2+(adbc)2=(a2+b2)(c2+d2)

Nên (ac+bd)2(a2+b2)(c2+d2)

23 tháng 8 2023

dasdfghjkl

 

AH
Akai Haruma
Giáo viên
22 tháng 7 2017

Bài 1:

Biến đổi tương đương thôi:

\((ac+bd)^2+(ad-bc)^2=a^2c^2+b^2d^2+2abcd+a^2d^2+b^2c^2-2abcd\)

\(=a^2c^2+b^2d^2+a^2d^2+b^2c^2=(a^2+b^2)(c^2+d^2)\)

Ta có đpcm

Bài 2: Áp dụng kết quả bài 1:

\((a^2+b^2)(c^2+d^2)=(ac+bd)^2+(ad-bc)^2\geq (ac+bd)^2\) do \((ad-bc)^2\geq 0\)

Dấu bằng xảy ra khi \(ad=bc\Leftrightarrow \frac{a}{c}=\frac{b}{d}\)