Cho a thuộc N ; a không chia hết cho 2 và 3
Chứng tỏ A = 4a^2 + 3a + 5 chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A nguyên <=> 3 ⋮ n - 2
=> n - 2 thuộc Ư(3)
=> n - 2 thuộc {-1;1;-3;3}
=> n thuộc {1;3;-1;5}
B nguyên <=> n ⋮ n + 1
=> n + 1 - 1 ⋮ n + 1
=> 1 ⋮ n + 1
=> như a
ĐK : \(n\ne2\)
\(A=\frac{3}{n-2}\Rightarrow n-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
n - 2 | 1 | -1 | 3 | -3 |
n | 3 | 1 | 5 | -1 |
ĐK : \(n\ne-1\)
\(B=\frac{n}{n+1}=\frac{n+1-1}{n+1}=1-\frac{1}{n+1}\)
\(\Rightarrow n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
n + 1 | 1 | -1 |
n | 0 | -2 |
Câu a
Nếu a=0 thì m và n là các số tự nhiên khác 0 tùy ý
a=1 thì m và n là các số tự nhiên tùy ý
a=-1 thì m và n là các số chẵn tùy ý hoặc các số lẻ tùy ý
a khác 0,a khác+_ 1 thì m=n
Câu b
Nếu a>1 thì m>n
Nếu 0<a<1 thì m<n
+) Xét trường hợp \(\dfrac{a}{b}>1\Rightarrow\) \(a>b\Rightarrow an>bn\) (do \(n\in\) N*)\(\Rightarrow an+ab>bn+ab\Rightarrow a.\left(b+n\right)>b.\left(a+n\right)\Rightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\)
+) Xét trường hợp \(\dfrac{a}{b}\le1\Rightarrow\)\(a\le b\Rightarrow an\le bn\) (do \(n\in\) N*)
\(\Rightarrow an+ab\le bn+ab\Rightarrow a.\left(b+n\right)\le b.\left(a+n\right)\Rightarrow\dfrac{a}{b}\le\dfrac{a+n}{b+n}\)
Vậy nếu \(\dfrac{a}{b}>1\) thì \(\dfrac{a}{b}>\dfrac{a+n}{b+n}\); nếu \(\dfrac{a}{b}\le1\) thì \(\dfrac{a}{b}\le\dfrac{a+n}{b+n}\).
Cho \(a\in N\) , biết a không chia hết cho 2 & 3
Hãy chứng tỏ \(A=4a^2+3a+5\) chia hết cho 3
Giải
Từ đề bài \(\Rightarrow a\) là số có một chữ số.
Ta có các số có tận cùng là 0 ; 2 ; 4 ; 6 ; 8 thì chia hết cho 2
Vậy a không thể là 0 ; 2 ; 4 ; 6 ; 8
Các số có tổng chia hết cho 3 thì chia hết cho 3 , nhưng ở đây là số có 1 chữ số nên chỉ có các số 3 ; 9 là chia hết cho 3
Vậy a không thể là 3 ; 9
\(\Rightarrow a=1;5;7\)
Thử lần lượt với phép tính \(A=4a^2+3a+5\)
Thế số vào ta được:
\(\left[{}\begin{matrix}A=41^2+31+5\\A=45^2+35+5\\A=47^2+37+5\end{matrix}\right.\)
Khi tính giá trị mỗi phép tính. Ta thấy rằng mỗi phép tính trên đều chia hết cho 3.
\(\Rightarrow\) biểu thức được chứng minh