cho tứ giác ABCD có hai đường chéo AC và BC vuông góc với nhau tại O
biết AB= \(\frac{1}{2}\)CD; OA= \(\frac{1}{3}\)AC và diện tích của tam giác OAB=4,3
Vậy SABCD \(=\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác BOC vuông tại O có: OB^2 +OC^2 =BC^2 (ĐL Py-ta-go)
=> OB^2= BC^2 -OC^2=15^2 -OC^2 =225-OC^2 (1)
xét tam giác DOC vuông tại O có: OC^2 +OD^2=Dc^2
=.> OD^2=DC^2-OC^2=24^2 -OC^2=576- OC^2 (2)
xét tam goác AOD vuông tại O có: OD^2+OA^2=AD^2
=> OA^2= AD^2-OD^2=20^2 -OD^2 (3)
thay (2) vào (3) ta đc: OA^2 = 400-576+ OC^2=OC^2-176 (4)
Xét tam giác AOB vuông tại O có : OA^2+OB^2=AB^2 (5)
thay (1),(4) vào (5) ta đc: AB^2=OC^2-176 +225-OC^2=49
=>AB=7(vì AB>0)
Xét tam giác \(ABD\)vuông tại \(A\):
\(BD^2=AB^2+AD^2\)(định lí Pythagore)
\(=4^2+10^2=116\)
\(\Rightarrow BD=\sqrt{116}=2\sqrt{29}\left(cm\right)\)
Lấy \(E\)thuộc \(CD\)sao cho \(AE\perp AC\)
Suy ra \(ABDE\)là hình bình hành.
\(AE=BD=2\sqrt{29}\left(cm\right),DE=AB=4\left(cm\right)\).
Xét tam giác \(AEC\)vuông tại \(A\)đường cao \(AD\):
\(\frac{1}{AD^2}=\frac{1}{AE^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AC^2}=\frac{1}{AD^2}-\frac{1}{AE^2}=\frac{1}{100}-\frac{1}{116}=\frac{1}{715}\)
\(\Rightarrow AC=\sqrt{715}\left(cm\right)\)
\(AE^2=ED.EC\Leftrightarrow EC=\frac{AE^2}{ED}=\frac{116}{4}=29\left(cm\right)\)suy ra \(DC=25\left(cm\right)\)
Hạ \(BH\perp CD\).
\(BC^2=HC^2+BH^2=21^2+10^2=541\Rightarrow BC=\sqrt{541}\left(cm\right)\)
\(S_{ABCD}=\left(AB+CD\right)\div2\times AD=\frac{4+25}{2}\times10=145\left(cm^2\right)\)
Câu hỏi của Nàng tiên cá - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo nhé!