K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2023

Trước hết ta chứng minh bổ đề sau:

Bổ đề 1: Cho tam giác ABC và 1 điểm M trên cạnh BC. Khi đó: \(\overrightarrow{AM}=\dfrac{MC}{BC}\overrightarrow{AB}+\dfrac{MB}{BC}\overrightarrow{AC}\)

Thật vậy, ta có \(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}\)

\(=\overrightarrow{AB}+\dfrac{BM}{BC}\overrightarrow{BC}\)

\(=\overrightarrow{AB}+\dfrac{BM}{BC}\left(\overrightarrow{AC}-\overrightarrow{AB}\right)\)

\(=\left(1-\dfrac{BM}{BC}\overrightarrow{AB}\right)+\dfrac{BM}{BC}\overrightarrow{AC}\)

\(=\dfrac{CM}{BC}\overrightarrow{AB}+\dfrac{BM}{BC}\overrightarrow{AC}\), bổ đề 1 được chứng minh.

Gọi P là giao điểm của AI và BC. Ta có: 

\(\dfrac{MA}{MB}.\dfrac{PB}{PC}.\dfrac{NC}{NA}=1\) \(\Rightarrow x.\dfrac{PB}{PC}.\dfrac{1}{y}=1\) \(\Rightarrow\dfrac{PB}{PC}=\dfrac{y}{x}\) \(\Rightarrow\dfrac{CP}{CB}=\dfrac{x}{x+y}\)

Mặt khác, \(\dfrac{IP}{IA}.\dfrac{MA}{MB}.\dfrac{CB}{CP}=1\) \(\Rightarrow\dfrac{IP}{IA}.x.\dfrac{x+y}{x}=1\) \(\Rightarrow\dfrac{IP}{IA}=\dfrac{1}{x+y}\)

Do đó \(\overrightarrow{AI}=\left(x+y\right)\overrightarrow{IP}\)

Mà theo bổ đề 1: \(\overrightarrow{IP}=\dfrac{PC}{BC}\overrightarrow{IB}+\dfrac{PB}{BC}\overrightarrow{IC}\)

\(=\dfrac{x}{x+y}\overrightarrow{IB}+\dfrac{y}{x+y}\overrightarrow{IC}\)

\(\Rightarrow\overrightarrow{AI}=x\overrightarrow{IB}+y\overrightarrow{IC}\) (đpcm)

 

 

 

 

18 tháng 1 2016

Đáp án :180 cm2 

Vì AM = 2/3 AB và AN = 2/3 AC nên SAMN = 2/3 AABC 

Suy ra diện tích tam giác ABC sẽ là 180 cm2

18 tháng 1 2016

trả tôi cái tick

tôi sẽ nhắc cho!

11 tháng 12 2021

.......?????? Đài phát thanh ?

5 tháng 1 2017

chào bạn!! :v

18 tháng 9 2023

a) Xét 2 tam giác vuông BAM và CAN có:

\(\widehat{BAM} = \widehat{CAM}(=90^0)\)

AB=AC (Do tam giác ABC cân tại A)

\(\widehat B = \widehat C\) (Do tam giác ABC cân tại A)

=>\(\Delta BAM = \Delta CAN\)(g.c.g)

b) Cách 1: 

Xét tam giác ABC cân tại A, có \(\widehat {A{\rm{ }}} = 120^\circ \) có:

\(\widehat B = \widehat C = \frac{{{{180}^o} - {{120}^o}}}{2} = {30^o}\).

Xét tam giác ABM vuông tại A có:

\(\widehat {B} + \widehat {BAM} + \widehat {AMB} = {180^o}\\ \Rightarrow {30^o} + {90^o} + \widehat {AMB} = {180^o}\\ \Rightarrow \widehat {AMB} = {60^o}\\ \Rightarrow \widehat {AMC} = {180^o} - \widehat {AMB} = {180^o} - {60^o} = {120^o}\)

Xét tam giác MAC có:

\(\begin{array}{l}\widehat {AMC} + \widehat {MAC} + \widehat C = {180^o}\\ \Rightarrow {120^o} + \widehat {MAC} + {30^o} = {180^o}\\ \Rightarrow \widehat {MAC} = {30^o} = \widehat C\end{array}\)

\(\Rightarrow \) Tam giác AMC cân tại M.

Vì \(\Delta BAM = \Delta CAN\)

=> BM=CN ( 2 cạnh tương ứng)

=> BM+MN=CN+NM

=> BN=CM

Xét 2 tam giác ANB và AMC có:

AB=AC (cmt)

\(AN = AM\)(do \(\Delta BAM = \Delta CAN\))

BN=MC (cmt)

=>\(\Delta ANB = \Delta AMC\)(c.c.c)

Mà tam giác AMC cân tại M.

=> Tam giác ANB cân tại N.

Cách 2: 

Xét tam giác ABC cân tại A, có \(\widehat {A{\rm{ }}} = 120^\circ \) có:

\(\widehat B = \widehat C = \frac{{{{180}^o} - {{120}^o}}}{2} = {30^o}\).

Xét tam giác ABM vuông tại A có:

\(\widehat B + \widehat {BAM} + \widehat {AMB} = {180^o}\\ \Rightarrow {30^o} + {90^o} + \widehat {AMB} = {180^o}\\ \Rightarrow \widehat {AMB} = {60^o}\)

Vì \(\Delta BAM = \Delta CAN\) nên AM = AN (2 cạnh tương ứng)

=> \(\Delta AMN\) đều (Tam giác cân có 1 góc bằng 60 độ)

=> \(\widehat {NAM}=60^0\)

Ta có: \(\widehat{BAN}+\widehat{NAM}=\widehat{BAM}\)

=> \(\widehat{BAN} + 60^0=90^0\)

=> \(\widehat{BAN}=30^0\)

Xét tam giác ABN có \(\widehat{BAN}=\widehat{ABN}(=30^0\) nên \(\Delta ABN\) cân tại N.

Ta có: \(\widehat{CAM}+\widehat{NAM}=\widehat{CAN}\)

=> \(\widehat{CAM} + 60^0=90^0\)

=> \(\widehat{CAM}=30^0\)

Xét tam giác ACM có \(\widehat{CAM}=\widehat{ACM}(=30^0\) nên \(\Delta ACM\) cân tại M.

1 tháng 3 2018

2 tháng 2 2021
hereNhãn

opend up

6 tháng 2 2021

a) Xét ΔABF và ΔCNF có:

       AF = CF (F là trung điểm của AC)

        ∠AFB = CFN (2 góc đối đỉnh)

        FB = FN (gt)

⇒ ΔABF = ΔCNF (c.g.c)

⇒ ∠ABF = ∠CNF (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong  ⇒ AB // NC

Xét ΔACE và ΔBME có:

      AE = BE (E là trung điểm của AB)

      ∠AEC = ∠BEM (2 góc đối đỉnh)

       EC = EM (gt)

⇒ ΔACE = ΔBME (c.g.c)

⇒ ∠ACE = ∠BME (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong  ⇒ AC // MB

b) Xét ΔANF và ΔCBF có:

        AF = CF (F là trung điểm của AC)

        ∠AFN = ∠CFB (2 góc đối đỉnh)

         FN = FB (gt)

⇒ ΔANF = ΔCBF (c.g.c)

⇒ ∠ANF = ∠CBF (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong ⇒ AN // BC (1)

Xét ΔAME và ΔBCE có:

      AE = BE (E là trung điểm của AB)

      ∠AEM = ∠BEC (2 góc đối đỉnh)

       EM = EC (gt)

⇒ ΔAME = ΔBCE (c.g.c)

⇒ ∠AME = ∠BCE (2 góc tương ứng)

mà 2 góc ở vị trí so le trong ⇒ AM // BC (2)

Từ (1) và (2) ⇒ 3 điểm M, A, N thẳng hàng

c) Ta có: ΔANF = ΔCBF (theo b)

⇒ AN = BC (2 cạnh tương ứng) (3)

Ta có: ΔAME = ΔBCE (theo b)

⇒ AM = BC (2 cạnh tương ứng) (4)

Từ (3) và (4) ⇒ AM = AN

image