K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2019

Hình (tự vẽ)

a) ΔACE = ΔAKE

Xét hai tam giác vuông ACE và AKE có:

∠CAE =  ∠KAE (AE là phân giác)

AE : cạnh chung

Do đó ΔACE = ΔAKE (cạnh huyền - góc nhọn)

b) EB > AC

Xét tam giác ABC vuông tại C ⇒ ∠A+ ∠B = 90⇒ ∠B = 90o - ∠A = 90- 60o = 30(1)

Ta có: AE là phân giác của ∠CAK ⇒ ∠CAE = ∠ KAE = ∠CAK : 2 = 60o : 2 = 30(2)

Từ (1) và (2) suy ra: ΔAEB cân tại E ⇒ EB = EA (hai cạnh đáy) (3)

Mà AE > AC (định lí đường vuông góc là đường ngắn nhất) (4)

Từ (3) và (4) suy ra: EB > AC.

13 tháng 4 2019

c) AC, DB, KE cùng đi qua một điểm.

Gọi giao của AC và BD là G.

Xét ΔABG có AD, BC là đường cao ⇒ E là trực tâm

⇒ GE ⊥ AB   

Mà EK ⊥ AB 

Nên G, E, K thẳng hàng 

Vậy AC, BD, KE cùng đi qua 1 điểm

28 tháng 8 2019

Đáp án A

8 tháng 11 2019

Đáp án D

Có S A B C = 1 2 . a . a = a 2 2  

 

 Vậy V S . A B C = 1 3 S A . S A B C = a 3 3 6

22 tháng 4 2017

tk ủng hộ với

29 tháng 9 2017

Đáp án: C

Gọi H là trung điểm BC ⇒ A ' H ⊥ ( A B C )

S ∆ A B C = 1 2 A B . A C = a 2 3 2

Kết luận  V = a 3 . a 2 3 2 = 3 a 3 2

23 tháng 9 2018

Đáp án B

26 tháng 12 2021

a: \(\widehat{ACB}=40^0\)

NV
29 tháng 1 2021

1.

\(\overrightarrow{AB}=\left(2;-6\right)\Rightarrow AB=2\sqrt{10}\) \(\Rightarrow BC=AB.cosB=\sqrt{10}\)

Gọi \(C\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AC}=\left(x-1;y-2\right)\\\overrightarrow{BC}=\left(x-3;y+4\right)\end{matrix}\right.\)

Tam giác ABC vuông tại C và có \(BC=\sqrt{10}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\overrightarrow{AC}.\overrightarrow{BC}=0\\BC^2=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x-3\right)+\left(y-2\right)\left(y+4\right)=0\\\left(x-3\right)^2+\left(y+4\right)^2=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-4x+2y-5=0\\x^2+y^2-6x+8y+15=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3y-10=0\\x^2+y^2-6x+8y+15=0\end{matrix}\right.\)

\(\Rightarrow\left(3y+10\right)^2+y^2-6\left(3y+10\right)+8y+15=0\)

\(\Leftrightarrow2y^2+10y+11=0\)

\(\Leftrightarrow y=...\)

NV
29 tháng 1 2021

2.

Kẻ \(EF\perp BC\)

\(S_{ABC}=9S_{BDE}\Rightarrow AD.BC=9EF.BD\Rightarrow\dfrac{EF}{AD}=\dfrac{BC}{9BD}\)

Talet: \(\dfrac{EF}{AD}=\dfrac{BF}{BD}=\dfrac{BC}{9BD}\Rightarrow BC=9BF\)

Hệ thức lượng: \(BE^2=BF.BC=9BF^2\Rightarrow BE=3BF\)

\(\Rightarrow cosB=\dfrac{BF}{BE}=\dfrac{1}{3}\)

Gọi R là bán kính đường tròn ngoại tiếp ABC và \(r\) là bán kính đường tròn ngoại tiếp BDE

\(sinB=\sqrt{1-\left(\dfrac{1}{3}\right)^2}=\dfrac{2\sqrt{2}}{3}\)

\(\Rightarrow r=\dfrac{DE}{2sinB}=\dfrac{3}{2}\) (định lý sin tam giác BDE)

Dễ dàng chứng minh 2 tam giác ABC và BDE đồng dạng (chung góc B và \(\widehat{A}=\widehat{BDE}\) vì cùng bù \(\widehat{CDE}\))

Mà \(S_{ABC}=9S_{BDE}\Rightarrow\) 2 tam giác đồng dạng tỉ số \(k=\sqrt{9}=3\)

\(\Rightarrow R=3r=\dfrac{9}{2}\)

a) Xét ΔABC có 

BA<BC(gt)

mà góc đối diện với cạnh BA là \(\widehat{ACB}\)

và góc đối diện với cạnh BC là \(\widehat{BAC}\)

nên \(\widehat{BAC}>\widehat{ACB}\)(Quan hệ giữa cạnh và góc đối diện trong tam giác)

b) Xét ΔABH vuông tại H và ΔAMH vuông tại H có

HB=HM(gt)

AH chung

Do đó: ΔABH=ΔAMH(hai cạnh góc vuông)

Suy ra: BA=MA(hai cạnh tương ứng)

Xét ΔBAM có BA=MA(cmt)

nên ΔBAM cân tại A(Định nghĩa tam giác cân)

Xét ΔBAM cân tại A có \(\widehat{B}=60^0\)(gt)

nên ΔBAM đều(Dấu hiệu nhận biết tam giác đều)

a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

b: Ta có: ΔABD=ΔEBD

nên BA=BE

hay ΔBAE cân tại B

mà \(\widehat{ABE}=60^0\)

nên ΔBAE đều

6 tháng 4 2022

a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

\(\stackrel\frown{ABD}=\stackrel\frown{EBD}\)

\(BD\left(chung\right)\)

=> ΔABD=ΔEBD(c.h-gn)

:Ta có: ΔABD=ΔEBD(cmt)

nên BA=BE

=> ΔBAE cân tại B

mà \(\widehat{ABE}=60^o\)

=> ΔBAE đều(t/c tam giác cân)

19 tháng 2 2018

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Trong ΔABC ta có:

∠A + ∠B + ∠C = 180o(tổng ba góc trong tam giác)

⇒∠B = 180o - (∠A +∠C )

⇒x = 180o - (60o + 50o) = 70o

(∠B1) =(∠B2 ) = (1/2 )∠B (vì BD là tia phân giác)

⇒ ∠B1 = ∠B2 = 70o : 2 = 35o

Trong ΔBCD ta có ∠(ADB) là góc ngoài tại đỉnh D

⇒ ∠(ADB) = ∠(B1 ) + ∠C (tính chất góc ngoài tam giác)

Nên ∠(ADB) = 35º + 50º = 85º

+) Do ∠(ADB) + ∠(BDC) = 180o(hai góc kề bù)

⇒∠(BDC) = 180o-∠(ADB) = 180o - 85o = 95o