K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2016

Ta có hình vẽ:

x O y t Q M H G

Cho Ot là tia phân giác \(\widehat{xOy}\)

a/ Xét tam giác OQM và tam giác OHM có:

\(\widehat{QOM}\)=\(\widehat{HOM}\) (GT)

OM: cạnh chung

\(\widehat{Q}\)=\(\widehat{H}\) =900 (GT)

Vậy tam giác OQM = tam giác OHM

(theo trường hợp cạnh huyền góc nhọn)

=> MQ = MH (2 cạnh tương ứng)

b/ Xét tam giác OQG và tam giác OHG có:

OG: cạnh chung

\(\widehat{QOM}\)=\(\widehat{HOM}\) (GT)

MQ = MH (câu a)

Vậy tam giác OQG = tam giác OHG (c.g.c)

=> GQ = GH (2 cạnh tương ứng)

c/ Ta có: tam giác OQG = tam giác OHG (đã chứng minh trên)

=> \(\widehat{OGQ}\)=\(\widehat{OGH}\) (2 góc tương ứng)

\(\widehat{OGQ}\)+\(\widehat{OGH}\)=1800 (kề bù)

=> \(\widehat{OGQ}\)=\(\widehat{OGH}\)=900 (1)

Ta lại có: GQ = GH (đã chứng minh ở câu b) (2)

Từ (1),(2) => OG là đường trung trực của QH

hay OM là đường trung trực của QH

(vì G,M đều nằm trên tia phân giác Ot)

1 tháng 3 2020
Bn viết rĩ hơn đc k
12 tháng 6 2020

ngu\(\hept{\begin{cases}3\\3\end{cases}\hept{\begin{cases}5\\5\\5\end{cases}}5555555b5b5b55b}\)

a: Xét ΔOAC vuông tại A và ΔOBC vuông tại B có 

OC chung

\(\widehat{AOC}=\widehat{BOC}\)

Do đó: ΔOAC=ΔOBC

Suy ra: OA=OB và CA=CB

=>ΔOAB cân tại O

b: Ta có: OA=OB

CA=CB

DO đó: OC là đường trung trực của AB

hay OC\(\perp\)AB

c: Xét ΔCAD vuông tại A và ΔCBE vuông tại B có

CA=CB

\(\widehat{ACD}=\widehat{BCE}\)

Do đó: ΔCAD=ΔCBE

SUy ra: CD=CE

19 tháng 3 2022

j

 

19 tháng 3 2022

j

a: Xét ΔOAI vuông tại A và ΔOBI vuông tại B có

OI chung

\(\widehat{AOI}=\widehat{BOI}\)

Do đó: ΔOAI=ΔOBI

Suy ra: IA=IB

b: \(OA=\sqrt{OI^2-IA^2}=8\left(cm\right)\)

c: Xét ΔIAK vuông tại A và ΔIBM vuông tại B có

IA=IB

\(\widehat{AIK}=\widehat{BIM}\)

Do đó: ΔIAK=ΔIBM

Suy ra: AK=BM

a: Xét ΔOAC vuông tại A và ΔOBC vuông tại B có

OC chung

\(\widehat{AOC}=\widehat{BOC}\)

Do đó;ΔOAC=ΔOBC

Suy ra: OA=OB và CA=CB

hay ΔOAB cân tại O

b: Ta có: ΔOAB cân tại O

mà OC là đường phân giác

nên CO là đường cao

c: Xét ΔCAD vuông tại A và ΔCBE vuông tại B có 

CA=CB

\(\widehat{ACD}=\widehat{BCE}\)

Do đó: ΔCAD=ΔCBE

Suy ra: CD=CE

d: OA=12cm

OC=13cm

=>AC=5cm

a: Xét ΔOAI vuông tại A và ΔOBI vuông tại B có 

OI chung

\(\widehat{AOI}=\widehat{BOI}\)

Do đó: ΔOAI=ΔOBI

Suy ra: IA=IB

b: \(OA=\sqrt{OI^2-AI^2}=8\left(cm\right)\)

c: Xét ΔAIK vuông tại A và ΔBIM vuông tại B có

IA=IB

\(\widehat{AIK}=\widehat{BIM}\)

Do đó: ΔAIK=ΔBIM

Suy ra: AK=BM

a: Xét ΔOAI vuông tại A và ΔOBI vuông tại B có

OI chung

góc AOI=góc BOI

=>ΔOAI=ΔOBI

=>OA=OB và IA=IB

b: OA=căn 10^2-6^2=8cm

c: Xét ΔIBM vuông tại B và ΔIAK vuông tại A có

IB=IA

góc AIK=góc BIM

=>ΔIBM=ΔIAK

d: OA+AK=OK

OB+BM=OM

mà OA=OB và AK=BM

nên OK=OM

mà IM=IK

nên OI là trung trực của MK

=>O,I,C thẳng hàng