Xác định hệ số a, b của các đa thức sau:
C(x) = ax + h
biết rằng C(2) = -1; C(1)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: P(1) = a . 1 + b = a + b = 1 (*)
P(2) = a . 2 + b = 2a + b = 5 (**)
(**) - (*) <=> a = 4
=> b = -3
a: Bậc là 2
Hệ số cao nhất là -7
Hệ số tự do là 1
b: Thay x=2 vào A=0, ta được:
\(a\cdot2^2-3\cdot2-18=0\)
\(\Leftrightarrow4a=24\)
hay a=6
c: Ta có: C+B=A
nên C=A-B
\(=6x^2-3x-18-1-4x+7x^2\)
\(=13x^2-7x-19\)
Ta có:
+) P(1) = 1a+b =a+b=1 (1)
+) P(2) = 2a+b=5 (2)
Từ (1) và (2), ta có hệ phương trình: \(\hept{\begin{cases}a+b=1\\2a+b=5\end{cases}}\)
Giải hệ phương trình, ta có: a=4; b=-3
Vậy a=4; b=-3.
Ta có:+) H(2) = 2.22 + a.2 + b = 5
=> 8 + 2a + b = 5
=> 2a + b = -3 (1)
+) H(1) = 2.12 + a.1 + b = -1
=> 2 + a + b = -1
=> a + b = -3 (2)
Từ (1) và (2) trừ vế cho vế :
(2a + b) - (a + b) = -3 - (-3)
=> a = 0
Thay a = 0 vào (2) ta được :
0 + b = -3 => b = -3
Vậy ...
\(H\left(2\right)=5\Rightarrow2.2^2+a.2+b=8+2a+b=5\)
\(\Rightarrow2a+b=-3\)
\(H\left(1\right)=-1\Rightarrow2.1^2+a+b=2+a+b=-1\)
\(\Rightarrow a+b=-3\)
\(\Rightarrow2a+b-\left(a+b\right)=a=-3-\left(-3\right)=0\)
\(\Rightarrow b=-3\)
Vậy a = 0; b = -3
\(C\left(x\right)=ax+b\)
\(\Rightarrow\hept{\begin{cases}C\left(2\right)=2a+b\\C\left(1\right)=a+b\end{cases}}\)
hay \(\hept{\begin{cases}2a+b=-1\left(1\right)\\a+b=0\left(2\right)\end{cases}}\)
Lấy (1) - (2), ta được: \(a=-1\)
\(\Rightarrow b=1\)
Vậy a = -1; b = 1