Cho ABC ( = 90o) ; BD là phân giác của góc B (D AC).
Trên tia BC lấy điểm E sao cho BA = BE.
a) Chứng minh BAD = BED. Từ đó suy raDE BE.
b) Chứng minh BD là đường trung trực của AE.
c) Kẻ AH BC. So sánh EH và EC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: AH⊥BC (gt) ⇒ ΔAHB vuông tại H
Trong tam giác vuông AHB ta có: ∠BHA = 90o
⇒ ∠B + ∠BAH = 90o (1)
Trong tam giác vuông ABC ta có: ∠BAC = 90o
⇒ ∠B + ∠C = 90o (2)
Từ (1) và (2) suy ra: ∠BAH = ∠C (3)
+) Vì AI là tia phân giác của góc BAC nên:
∠(BAI) = ∠(IAH) = 1/2.∠BAH (4)
Do CI là tia phân giác của góc ACB nên:
∠(ACI) = ∠(ICB) = 1/2.∠C (5)
+) Từ (3); (4) và (5) suy ra:
∠(BAI) = ∠(IAH) = ∠(ACI) = ∠(ICB)
+) Lại có:
∠BAI + ∠IAC = 90º
Suy ra: ∠ICA + ∠IAC = 90º
Trong ΔAIC có: ∠ICA+ ∠IAC = 90º
Vậy: ∠AIC = 90º.
Xét tam giác ABH và ACH
=> 2 tam giác trên đồng dạng
=> \(\dfrac{AH}{HC}=\dfrac{AB}{AC}\)
\(mà\dfrac{AB}{AC}=\dfrac{5}{7}=>\dfrac{AH}{HC}=\dfrac{5}{7}=>HC=\dfrac{7.15}{5}=21\left(cm\right)\)
Áp dụng hệ thức lượng :
AH^2 = HB.HC => HB = \(\dfrac{15^2}{21}=\dfrac{75}{7}\left(cm\right)\)
*Đề bài viết thiếu đường cao AH :v
Xét tam giác AHB và tam giác CHA có:
góc AHB = góc CHA = 90o
góc BAH = góc C ( cùng phụ với góc B)
⇒\(\dfrac{AH}{HC}=\dfrac{AB}{AC}=\dfrac{HB}{AH}\)
Theo đề bài ta có : \(\dfrac{AB}{AC}=\dfrac{5}{7}\)
⇒\(\dfrac{AB}{AC}=\dfrac{HB}{AH}\Leftrightarrow\dfrac{5}{7}=\dfrac{HB}{15}\Leftrightarrow HB=\dfrac{75}{7}\left(cm\right)\)
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AH}{HC}\Leftrightarrow\dfrac{5}{7}=\dfrac{15}{HC}\Leftrightarrow HC=21\left(cm\right)\)
Tam giác ABC là tam giác vuông nên góc A là góc lớn nhất, suy ra cạnh lớn nhất là BC. Chọn B
Ta có: \(AH^2=HB.HC\Rightarrow\dfrac{AH}{HB}=\dfrac{HC}{AH}\)
Xét tam giác AHB và tam giác CHA có:
\(\widehat{AHB}=\widehat{AHC}=90^0\)
\(\dfrac{AH}{HB}=\dfrac{HC}{AH}\)
\(\Rightarrow\Delta AHB\sim\Delta CHA\left(c.g.c\right)\)
\(\Rightarrow\widehat{BAH}=\widehat{HCA}\)
Mà \(\widehat{HCA}+\widehat{HAC}=90^0\)(ΔHAC vuông tại H)
\(\Rightarrow\widehat{BAH}+\widehat{HAC}=90^0\)
\(\Rightarrow\widehat{BAC}=90^0\left(đpcm\right)\)
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
=>DA=DE
b: BA=BE
DA=DE
=>BD là trung trực của AE
c: góc CAE+góc BAE=90 độ
góc HAE+góc BEA=90 độ
góc BAE=góc BEA
=>góc CAE=góc HAE
=>AE là phân giác của góc HAC
=>EH/AH=EC/AC
mà AH<AC
nên EH<EC