K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có 

\(\widehat{ABC}\) chung

Do đó: ΔAHB∼ΔCAB(g-g)

a) Xét ΔBAH vuông tại H và ΔBCA vuông tại A có 

\(\widehat{ABH}\) chung

Do đó: ΔBAH\(\sim\)ΔBCA(g-g)

a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có 

\(\widehat{ABH}\) chung

Do đó: ΔAHB\(\sim\)ΔCAB(g-g)

b) Xét ΔAHB vuông tại H và ΔCHA vuông tại H có

\(\widehat{BAH}=\widehat{ACH}\left(=90^0-\widehat{ABH}\right)\)

Do đó: ΔAHB\(\sim\)ΔCHA(g-g)

Suy ra: \(\dfrac{HA}{HC}=\dfrac{HB}{HA}\)

hay \(AH^2=HB\cdot HC\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Ta có: ΔAHB\(\sim\)ΔCAB(cmt)

nên \(\dfrac{AH}{CA}=\dfrac{HB}{AB}=\dfrac{AB}{CB}\)

\(\Leftrightarrow\dfrac{AH}{8}=\dfrac{HB}{6}=\dfrac{6}{10}=\dfrac{3}{5}\)

Suy ra: AH=4,8cm; HB=3,6cm

26 tháng 4 2023

a) Xét ΔCHA và ΔCAB ta có:

\(\widehat{C}\) chung

\(\widehat{BAC}=\widehat{AHC}=90^0\)

\(\Rightarrow\Delta CHA\)\(\Delta CAB\left(g.g\right)\)

b)Xét ΔABC vuông tại A, áp dụng địn lí py-ta-go ta có:

\(BC^2=AB^2+AC^2\\ \Rightarrow AB^2=BC^2-AC^2\)

             \(=20^2-16^2\)

             \(=144\)

\(\Rightarrow AB=\sqrt{144}=12cm\)

vì ΔCHA∼ΔCAB(cmt)

\(\Rightarrow\dfrac{AB}{AH}=\dfrac{AC}{CH}=\dfrac{BC}{AC}hay\dfrac{12}{AH}=\dfrac{16}{CH}=\dfrac{20}{16}=\dfrac{5}{4}\)

Suy ra:

\(AH=\dfrac{12.4}{5}=9,6cm\)

\(CH=\dfrac{16.4}{5}=12,8cm\)

Xét ΔAHC có AD là phân giác ta có:

\(\dfrac{AH}{HD}=\dfrac{AC}{DC}=\dfrac{AH+AC}{CH}hay\dfrac{9,6}{HD}=\dfrac{16}{DC}=\dfrac{16+9,6}{12,8}=2\)

\(\Rightarrow DC=\dfrac{16}{2}=8cm\)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Ta có: ΔAHB\(\sim\)ΔCAB(cmt)

nên \(\dfrac{AH}{CA}=\dfrac{HB}{AB}=\dfrac{AB}{CB}\)(Các cặp cạnh tương ứng tỉ lệ)

\(\Leftrightarrow\dfrac{AH}{8}=\dfrac{HB}{6}=\dfrac{6}{10}=\dfrac{3}{5}\)

Suy ra: \(\left\{{}\begin{matrix}\dfrac{AH}{8}=\dfrac{3}{5}\\\dfrac{HB}{6}=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=4.8\left(cm\right)\\HB=3.6\left(cm\right)\end{matrix}\right.\)

Vậy: AH=4,8cm; HB=3,6cm

a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có 

\(\widehat{ABH}\) chung

Do đó: ΔAHB\(\sim\)ΔCAB(g-g)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{B}\) chung

Do đó: ΔABC\(\sim\)ΔHBA

Suy ra: AB/HB=BC/BA

=>BH/AB=BC/BA(1)

hay \(AB^2=BH\cdot BC\)

Câu b đề sai rồi bạn

26 tháng 2 2022

Cảm ơn bạn nhiều. Giải mình câu C nhé. Cảm ơn bạn

 

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

b: Xét ΔBAC có BF là phân giác

nên AF/AB=CF/CB

=>AF*CB=AB*CF