cho tập hợp A={xϵ R |\(\dfrac{2x}{x^2+1}\)≥1} ; B là tập hợp tất cả các giá trị nguyên của b để phương trình x2 -2bx+4=0 vô nghiệm .Tìm số phần tử chung của hai tập hợp trên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
Tập hợp A:
\(A=\left[-5;\dfrac{1}{2}\right]\)
Tập hợp B:
\(B=\left(-3;+\infty\right)\)
Mà: \(A\cap B\)
\(\Rightarrow\left\{x\in R|-3\le x\le\dfrac{1}{2}\right\}\)
⇒ Chọn A
Lời giải:
\(A\cap B = (-3; 1)\)
P/s: Những bài này bạn cứ vẽ trục số ra rất dễ hình dung để làm.
\(A=\left\{1;2;3;4;5;6;7;8;9\right\}\)
=> A có 9 phần tử
a: \(=\dfrac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{-6}{x^2-4}\)
b: Để A=6 thì x^2-4=-1
=>x^2=3
=>\(x=\pm\sqrt{3}\)
c: Để A là số nguyên thì \(x^2-4\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
mà x là số nguyên
nên \(x\in\left\{1;-1\right\}\)
Câu 2:
\(\left(A\cup B\right)\cap C=A\cap C=[1;+\infty)\cap\left(0;4\right)=[1;4)\)
Tập này có 3 phần tử nguyên
A)
\(2x^3-5x+3=0\Leftrightarrow (2x^3-2x)-(3x-3)=0\)
\(\Leftrightarrow 2x(x^2-1)-3(x-1)=0\)
\(\Leftrightarrow 2x(x-1)(x+1)-3(x-1)=0\)
\(\Leftrightarrow (x-1)(2x^2+2x-3)=0\)
\(\Rightarrow \left[\begin{matrix} x=1\\ 2x^2+2x-3=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=1\\ x=\frac{-1\pm \sqrt{7}}{2}\end{matrix}\right.\)
Vậy \(A=\left\{1; \frac{-1+\sqrt{7}}{2}; \frac{-1-\sqrt{7}}{2}\right\}\)
B)
Ta có: \(x=\frac{1}{2^a}\geq \frac{1}{8}\)
\(\Rightarrow 2^a\leq 8\Leftrightarrow 2^a\leq 2^3\)
Mà \(a\in\mathbb{N}\Rightarrow a\in\left\{0;1;2;3\right\}\)
\(\Rightarrow x\in\left\{1; \frac{1}{2}; \frac{1}{4}: \frac{1}{8}\right\}\)
Vậy \(B=\left\{1; \frac{1}{2}; \frac{1}{4}; \frac{1}{8}\right\}\)
C) \(C=\left\{x\in\mathbb{N}|x=a^2,a\in\mathbb{N}, x\leq 400\right\}\)
Ta thấy: \(x=a^2\leq 400\)
\(\Leftrightarrow a^2-400\leq 0\Leftrightarrow (a-20)(a+20)\leq 0\)
\(\Leftrightarrow -20\leq a\leq 20\). Mà \(a\in\mathbb{N}\Rightarrow 0\leq a\leq 20\)
\(\Rightarrow a\in\left\{0;1;2;3;...;20\right\}\)
\(\Rightarrow x\in \left\{0^2;1^2;2^2;3^2;....;20^2\right\}\)
Vậy \(C=\left\{0^2;1^2;2^2;,...; 20^2\right\}\)
+)
\(\dfrac{2x}{x^2+1}\ge1\Leftrightarrow2x\ge x^2+1\Leftrightarrow x^2-2x+1\le0\\ \Leftrightarrow\left(x-1\right)^2\le0\)
Mà \(\left(x-1\right)^2\ge0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
\(A=\left\{1\right\}\)
Để \(x^2-2bx+4=0\Leftrightarrow\Delta=4b^2-4\cdot4< 0\)
\(\Leftrightarrow b^2-4< 0\Leftrightarrow\left(b-2\right)\left(b+2\right)< 0\\ \Leftrightarrow x\le-2;x\ge2\)
\(\Leftrightarrow B=\left\{x\in R|x\le-2;x\ge2\right\}\)
Vậy \(A\cap B=\varnothing\)
sai bạn ơi phải là -2<b<2