K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2016

a) tacó:

B=\(\frac{-2}{m}.x^4.y^6=\frac{-2}{m}.\left(x^2.y^3\right)^2\)

=> Hai đơn thức A và B đồng dạng 

b)

A-B=5m(x2.y3)2-\(\frac{-2}{m}\).(x2.y3)2=\(\left(5m+2.1:m\right).\left(x^2.y^3\right)^2=5m+2m.\left(x^2.y^3\right)^2=7m.\left(x^4.y^6\right)\)

14 tháng 3 2016

a) A=5m(x2y3)2=5m.(x2)2.(y3)2=5m.x4.y6

B=-2/m.x4.y6

Vì cùng phần biến x4.y6=>A và B là 2 đơn thức đồng dạng

b) \(A-B=5m.x^4.y^6-\left(\frac{-2}{m}.x^4.y^6\right)=x^4y^6.\left[5-\left(\frac{-2}{m}\right)\right]=x^4.y^6.\left(5+\frac{2}{m}\right)=x^4.y^6.\frac{5m+2}{m}\)

c) đang nghĩ

3 tháng 4 2022

a. A= 2. (-x)5 . y5

b. Hệ số là 2

    Phần biến là (-x)5 . y5

    Bậc là 10

 c. 2. [-(-2)]5 . 15

= 2. 32 = 64

3 tháng 4 2022

thanks bạn nha !!!

10 tháng 10 2018

Chọn C

a: \(\dfrac{3\left(x-y\right)^4+2\left(x-y\right)^3-5\left(x-y\right)^2}{\left(y-x\right)^2}\)

\(=\dfrac{3\left(x-y\right)^4+2\left(x-y\right)^3-5\left(x-y\right)^2}{\left(x-y\right)^2}\)

\(=3\left(x-y\right)^2+2\left(x-y\right)-5\)

b: \(\dfrac{\left(x-2y\right)^3}{x^2-4xy+4y^2}\)

\(=\dfrac{\left(x-2y\right)^3}{\left(x-2y\right)^2}\)

=x-2y

c: \(\dfrac{x^3+y^3}{x+y}\)

\(=\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)}{x+y}\)

\(=x^2-xy+y^2\)

2 tháng 6 2019

Đơn thức - 36 a 2 . b 2 . x 2 . y 3  với a, b là hằng số có hệ số là - 36 a 2 . b 2

Chọn đáp án B

17 tháng 2 2018

Chọn D

19 tháng 8 2021

a)\(\dfrac{3\left(x-y\right)^4+2\left(x-y\right)^3-5\left(x-y\right)^2}{\left(y-x\right)^2}=\dfrac{\left(x-y\right)^2\left[3\left(x-y\right)^2+2\left(x-y\right)-5\right]}{\left(x-y\right)^2}=3x^2-6xy+3y^2+2x-2y-5\)

b) \(\dfrac{\left(x-2y\right)^3}{x^2-4xy+4y^2}=\dfrac{\left(x-2y\right)^3}{\left(x-2y\right)^2}=x-2y\)

c) \(\dfrac{x^3+y^3}{x+y}=\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)}{x+y}=x^2-xy+y^2\)

 

a: \(\dfrac{3\left(x-y\right)^4+2\left(x-y\right)^3-5\left(x-y\right)^2}{\left(y-x\right)^2}\)

\(=\dfrac{3\left(x-y\right)^4+2\left(x-y\right)^3-5\left(x-y\right)^2}{\left(x-y\right)^2}\)

\(=3\left(x-y\right)^2+2\left(x-y\right)-5\)

b: \(\dfrac{\left(x-2y\right)^3}{x^2-4xy+4y^2}\)

\(=\dfrac{\left(x-2y\right)^3}{\left(x-2y\right)^2}\)

=x-2y

c: \(\dfrac{x^3+y^3}{x+y}\)

\(=\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)}{x+y}\)

\(=x^2-xy+y^2\)

29 tháng 11 2018

Đáp án đúng là (A) 3x2 y3 và 3x3 y2 là hai đơn thức đồng dạng.

15 tháng 10 2023

\(a,A=x^2+y^2\\=x^2-2xy+y^2+2xy\\=(x-y)^2+2xy\\=2^2+2\cdot1\\=4+2\\=6\)

\(b,x+y=1\\\Leftrightarrow (x+y)^3=1^3\\\Leftrightarrow x^3+3x^2y+3xy^2+y^3=1\\\Leftrightarrow x^3+3xy(x+y)+y^3=1\\\Leftrightarrow x^3+3xy\cdot1+y^3=1\\\Rightarrow A=1\)

15 tháng 10 2023

a) Ta có:

\(x-y=2\)

\(\Rightarrow\left(x-y\right)^2=2^2\)

\(\Rightarrow x^2-2xy+y^2=4\)

Mà: \(xy=1\)

\(\Rightarrow\left(x^2+y^2\right)-2\cdot1=4\)

\(\Rightarrow x^2+y^2=4+2\)

\(\Rightarrow x^2+y^2=6\)

b) Ta có: 

\(x+y=1\)

\(\Rightarrow\left(x+y\right)^3=1^3\)

\(\Rightarrow x^3+3x^2y+3xy+y^3=1\)

\(\Rightarrow x^3+3xy\left(x+y\right)+y^3=1\) 

Mà: x + y = 1

\(\Rightarrow x^3+3xy\cdot1+y^3=1\)

\(\Rightarrow x^3+3xy+y^3=1\)

9 tháng 5 2022

`x^2-2y^2+2/3x^2y^3+B=2x^2+y^2+2/3x^2y^3`

`=>B=2x^2+y^2+2/3x^2y^3-x^2+2y^2-2/3x^2y^3`

`=>B=(2x^2-x^2)+(y^2+2y^2)+(2/3x^2y^3-2/3x^2y^3)`

`=>B=x^2+3y^2`

Thay `x=1 ; y=[-1]/3` vào `B` có:

   `B=1^2+3.([-1]/3)^2=1+3 . 1/9=1+1/3=4/3`

9 tháng 5 2022

`x^2 - 2y^2 + 2/3x^2y^3 + B = 2x^2 + y^2 + 2/3x^2y^3`

`=> B  = 2x^2 + y^2 + 2/3x^2y^3` `- (x^2 - 2y^2 + 2/3x^2y^3)`

         `= 2x^2 + y^2 + 2/3x^2y^3 - x^2 + 2y^2 - 2/3x^2y^3`

         `= ( 2x^2 - x^2 ) + ( y^2 + 2y^2 ) + ( 2/3x^2y^3 - 2/3x^2y^3 )`

         `= x^2 + 3y^2`

Thay `x=1 ; y=-1/3` vào `B` ta có `:`

`B = 1^2 + 3 . ( -1/3 )^2`

   `= 1 + 1/3`

   `= 4/3`