K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ABCP có

F là trung điểm chung của AC và BP

nen ABCP là hình bình hành

Suy ra: AP//BC và AP=BC

Xét tứ giác AQBC có

E là trug điểm chung của AB và QC

nên AQBC là hình bình hành

Suy ra: AQ//BC và AQ=BC

=>AP=AQ

b: Ta có: AQ//BC

AP//BC

DO đó: P,A,Q thẳng hàng

c: Ta có: AQBC là hình bình hành

nên BQ//AC

Ta có: ABCP là hình bình hành

nên CP//AB

3 tháng 7 2017

Lục giác DPEQFM có các cặp cạnh đối bằng nhau từng đôi một:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

DP = QF (vì bằng 1/2 OA);

PE = MF (vì bằng 1/2 OC)

EQ = MD (vì bằng 1/2 OB)

Lục giác DPEQFM có 6 cạnh bằng nhau chỉ khi DP = PE = EQ.

Muốn vậy, ta phải có OA = OB = OC, khi đó O là điểm cách đều ba điểm A, B, C. Vậy O là giao điểm của ba đường trung trực tam giác ABC.

1) Tam giác ABC có I là giao điểm các tia phân giác của góc B và C, M là trung điểm của BC. Biết góc BIM=90 và BI=2IMa. Tính góc BACb.Vẽ IH vuông góc AC. Chứng minh rằng BA=3IH2)Cho tam giác ABC. Lấy các điểm D, E theo thứ tự trên các cạnh AB, AC sao cho BD=CE. Gọi M, N theo thứ tự là trung điểm của BC, DE. Chứng minh rằng đường thẳng MN tạo với các đường thẳng AB, AC các góc bằng nhau3)Cho tam giác ABC. Ở...
Đọc tiếp

1) Tam giác ABC có I là giao điểm các tia phân giác của góc B và C, M là trung điểm của BC. Biết góc BIM=90 và BI=2IM
a. Tính góc BAC
b.Vẽ IH vuông góc AC. Chứng minh rằng BA=3IH

2)Cho tam giác ABC. Lấy các điểm D, E theo thứ tự trên các cạnh AB, AC sao cho BD=CE. Gọi M, N theo thứ tự là trung điểm của BC, DE. Chứng minh rằng đường thẳng MN tạo với các đường thẳng AB, AC các góc bằng nhau

3)Cho tam giác ABC. Ở phía ngoài tam giác ấy vẽ tam giác đều ACE. Trên nửa mặt phẳng chứa C có bờ AB, vẽ tam giác đều ABD. Gọi H, K, M theo thứ tự là trung điểm của AB, AE, CD. Chứng minh rằng HKM là tam giác đều

4)Cho điểm M nằm trên đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB, vẽ các tam giác đều AMC, BMD. Gọi E, F theo thứ tự là trung điểm của AD, BC. Chứng minh rằng EF=1/2CD

0