K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2019

1: Xét tứ giác ABED có

góc DAB=90 độ(gt)

góc ADE=90 độ(gt)

góc BED=90 độ(do \(BE\perp DC\))

Do đó: ABED là hình chữ nhật(dấu hiệu nhận biết hình chữ nhật)

Ta có : \(S_{ABED}=AD\cdot AB=15\cdot12=180cm\)

2:

*tính BE

Ta có: BE=AD(do BE và AD là hai cạnh đối của hình chữ nhật ABED)

mà AD=15cm(gt)

nên BE=15cm

*Tính EC

Ta có: \(DE+EC=DC\)(do E nằm giữa D và C)

hay \(12+EC=20\)

\(\Rightarrow EC=20-12=8cm\)

*Tính BC

Xét \(\Delta BEC\) vuông tại E có

\(BC^2=BE^2+EC^2\)(định lí Pytago)

hay \(BC^2=15^2+8^2=225+64=289\)

\(\Leftrightarrow BC=\sqrt{289}=17cm\)

Vậy: BE=15cm; EC=8cm; BC=17cm

15 tháng 6 2017

3)áp dụng pytago để tính

31 tháng 7 2018

a, Bạn chứng minh được \(\Delta ABD\infty\Delta BDC\left(g.g\right)\)

\(\Rightarrow\frac{AB}{BD}=\frac{BD}{DC}\Rightarrow AB.DC=BD^2\Rightarrow2.8=BD^2\Rightarrow BD^2=16\Rightarrow BD=4\left(cm\right)\)(vì AB = 2cm , CD = 8 cm)

Ta có: \(\frac{BD}{CD}=\frac{4}{8}=\frac{1}{2}\)

Xét tam giác BDC vuông tại B có: BD = 1/2 CD nên \(\widehat{C}=30^0\)

ABCD là hình thang vuông(gt) \(\Rightarrow AB//CD\)

 \(\Rightarrow\widehat{ABC}+\widehat{C}=180^0\) ( 2 góc trong cùng phía)

\(\Rightarrow\widehat{ABC}+30^0=180^0\) (do góc C = 30 độ)

\(\Rightarrow\widehat{ABC}=150^0\)

b, Áp dụng định lí Pitago vào tam giác ABD vuông tại A, tính được: \(AD=\sqrt{12}\left(cm\right)\)

Diện tích hình thang ABCD là: 

                         \(\frac{\left(2+8\right).\sqrt{12}}{2}=5\sqrt{12}\left(cm^2\right)\) 

Chúc bạn học tốt.

1 tháng 5 2020

thang cho dung hoi nua

a) Xét ΔABD vuông tại A và ΔHDB vuông tại H có 

BD chung

\(\widehat{ABD}=\widehat{HDB}\)(hai góc so le trong, AB//DH)

Do đó: ΔABD=ΔHDB(Cạnh huyền-góc nhọn)

b) Xét tứ giác ABHD có

\(\widehat{BAD}=90^0\)(gt)

\(\widehat{ADH}=90^0\)(gt)

\(\widehat{BHD}=90^0\)(gt)

Do đó: ABHD là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

Hình chữ nhật ABHD có AB=AD(gt)

nên ABHD là hình vuông(Dấu hiệu nhận biết hình vuông)

Suy ra: AB=DH=AD=BH=2(cm)

Ta có: DH+HC=DC(H nằm giữa D và C)

nên HC=DC-DH=4-2=2(cm)

Xét ΔBHC vuông tại H có BH=HC(=2cm)

nên ΔBHC vuông cân tại H(Định nghĩa tam giác vuông cân)

A B D H C 2 2 2 2 2

a)ta có \(AD\perp DC,BH\perp DC\)

\(\Rightarrow AD\)//BH

mà AB//DH

=> AB=BH=HD=DA=2 cm

Xét △ABD và △HDB có

AB=HD(chứng minh trên)

BD;chung

AD=BH(chứng minh trên)

=>△ABD = △HDB(c-c-c)

vậy △ABD = △HDB

ta có DH=2 cm

mà DC=4cm

=>HC=2 cm

ta có HC=BH(=2cm)

mà BH⊥HC

=>△BHC vuông cân tại H

19 tháng 8 2018

Tam giác ACD vuông tại C có góc CAD = góc ABC = 60 độ   (cùng phụ với CAB)

=>  AC = 2AD

Áp dụng Pytago ta có:

AC2 = AD2 + DC2

<=>  4AD2 = AD2 + 900

<=>  AD2 = 300

<=> \(AD=10\sqrt{3}\)

Kẻ CH vuông với AB

AHCD là hình chữ nhật  (có góc A=D=H = 900)

=>  AH = CD = 30;   CH = AD = \(10\sqrt{3}\)

Tgiac ACB vuông tại C, ta có:

CH2 =HA.HB

=>  \(HB=\frac{CH^2}{HA}=10\)

=>   AB = AH + HB = 40

\(S_{ABCD}=\frac{1}{2}CH.\left(AB+CD\right)=350\sqrt{3}\)