K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2021

H A B K C M I

a, Xét \(\Delta AHM\) và \(\Delta AKM\) có:

\(\widehat{AHM}=\widehat{AKM}=90^o\)

AM cạnh chung

\(\widehat{HAM}=\widehat{KAM}\) (vì AM là tia phân giác của \(\widehat{HAK}\))

\(\Rightarrow\Delta AHM=\Delta AKM\) (cạnh huyền - góc nhọn)

`=> AH = AK` (2 cạnh tương ứng)  (1)

Ta có: \(\widehat{AMK}+\widehat{KAM}=90^o\) (vì \(\Delta AKM\) vuông tại K)

          \(\widehat{KAM}+\widehat{BAM}=90^o\)

\(\Rightarrow\widehat{AMK}=\widehat{BAM}\)

Mà \(\widehat{AMK}=\widehat{AMB}\) (vì \(\Delta AHM=\Delta AKM\))

\(\Rightarrow\widehat{BAM}=\widehat{AMB}\)

\(\Rightarrow\Delta ABM\) cân tại B \(\Rightarrow AB=BM\)  (2)

Từ (1), (2) ta có đpcm

b, Xét \(\Delta HIM\) và \(\Delta CKM\) có:

\(\widehat{HMI}=\widehat{CMK}\) (2 góc đối đỉnh)

HM = KM (vì \(\Delta AHM=\Delta AKM\))

\(\widehat{IHM}=\widehat{CKM}\left(=90^o\right)\)

\(\Rightarrow\Delta HIM=\Delta KCM\left(g.c.g\right)\)

`=> HI = CK` (2 cạnh tương ứng)

Mà AH = AK (cmt)

`=> AH + HI = AK + CK`

`=> AI = AC`

\(\Rightarrow\Delta ACI\) cân tại A

AM là đường phân giác của \(\Delta ACI\) cân tại A

`=> AM` cũng là đường cao

\(\Rightarrow AM\perp CI\)     (3)

Vì AH = AK nên \(\Delta AHK\) cân tại A

\(\Rightarrow\widehat{AHK}=\dfrac{180^o-\widehat{CAI}}{2}\)  

\(\Delta ACI\) cân tại A \(\Rightarrow\widehat{AIC}=\dfrac{180^o-\widehat{CAI}}{2}\)

\(\Rightarrow\widehat{AHK}=\widehat{AIC}\)

Mà 2 góc này ở vị trí đồng vị

`=>` HK // CI  (4)

Từ (3), (4) ta có đpcm

12 tháng 6 2021

Cam on ban nhieu nha !

 

a: \(BC=\sqrt{9^2+6^2}=3\sqrt{13}\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot9}{3\sqrt{13}}=\dfrac{18\sqrt{13}}{13}\left(cm\right)\)

b: Xét ΔEBF vuông tạiE và ΔEDC vuông tại E có

\(\widehat{EBF}=\widehat{EDC}\)

Do đó: ΔEBF\(\sim\)ΔEDC

d: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

Suy ra: BA=BE và DA=DE

Xét ΔADF vuông tại A và ΔEDC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

DO đó: ΔADF=ΔEDC

Suy ra: AF=EC

=>BF=BC

=>ΔBFC cân tại B

mà BD là đường phân giác

nên BD la đường cao

23 tháng 2 2021

a) △ABC cân tại A ⇒ AB = AC

△ABH vuông tại H có \(AB^2=AH^2+HB^2\\ \Rightarrow AB=AC=\sqrt{6^2+8^2}=10\left(cm\right)\)

b) △ABH và △ACH có:

\(\widehat{AHB}=\widehat{AHC}=90^o\\ AH:\text{cạnh chung}\\ AB=AC\)

\(\Rightarrow\text{△ABH = △ACH (cạnh huyền - cạnh góc vuông)}\)

 

a) Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow AB^2=8^2+6^2=100\)

hay AB=10(cm)

Ta có: AB=AC(ΔABC cân tại A)

mà AB=10cm(cmt)

nên AC=10cm

Vậy: AB=10cm; AC=10cm

b) Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)