CMR : UWCLN ( 12.n +1 ; 30.n +1 ) = 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi UCLN \(21n+4\)và \(14n+3\)là \(d\)\((d\inℕ^∗)\)
\(\Rightarrow\hept{\begin{cases}21n+4⋮d\\14n+3⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2\left(21n+4\right)⋮d\\3\left(14n+3\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}42n+8⋮d\\42n+9⋮d\end{cases}}\)
\(\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)
\(\Rightarrow1⋮d\)
Mà \(d\inℕ^∗\)
\(\Rightarrow d=1\)
\(\Rightarrow\left(21n+4,14n+3\right)=1\)\(\forall n\inℕ^{ }\)
Bạn nên xem lại đề vì 61440 ms làm đc
Tích của a/32 với b/32 là:
61440 : 32 : 32= 60.
Chắc chắn a/32 và b/32 sẽ nguyên tố cùng nhau vì ước chung ln của chúng là 32.
Vậy a là 5.32=160 và b là 12.32=384
đây là nguyên tố cùng nhau
=> ƯCLN của 12 và 7=1
=> đúng 100 % nha
=))))))))))))))))))))))))))))
12=2^2*3
7=7
ƯSCLN(12,7)=1
Vì 12 và 7 là số nguyên tố cùng nhau nên có ƯSCLN là 1
Gọi d=UCLN(2n-1;9n+4)
\(\Leftrightarrow9\left(2n-1\right)-2\left(9n+4\right)⋮d\)
\(\Leftrightarrow-17⋮d\)
=>d=17
giả sử ƯCLN ( 2n + 1 ; n + 1 ) = d
Theo bài ra :
2n + 1 \(⋮\)d
n + 1 \(⋮\)d \(\Rightarrow\)2 . ( n + 1 ) \(⋮\)d
Suy ra : 2 . ( n + 1 ) - ( 2n + 1 ) \(⋮\)d
\(\Rightarrow\)2n + 2 - 2n - 1 \(⋮\)d
\(\Rightarrow\)1 \(⋮\)d
Vậy ƯCLN ( 2n + 1 ; n + 1 ) = 1
Ta có: 1+2+3+...+n = n(n+1)/2
Gọi d = ƯCLN ( n(n+1)/2, 2n+1) ( d thuộc N*)
=> n(n+1)/2 chia hết cho d, 2n+1 chia hết cho d
=> n(n+1) chia hết cho d, 2n+1 chia hết cho d
=> n2+n chia hết cho d, n.(2n+1) chia hết cho d
=> n2+n chia hết cho d, 2n2+n chia hết cho d
=> (2n2+n) - (n2+n) chia hết cho d
=> 2n2+n-n2-n chia hết cho d
=> n2 chia hết cho d
Mà n2+n chia hết cho d => (n2+n)-n2 chia hết cho d
=> n chia hết cho d
=> 2n chia hết cho d
Mà 2n+1 chia hết cho d => (2n+1)-2n chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN ( n(n+1)/2, 2n=1) = 1
Vậy ƯCLN của 1+2+3+...+n và 2n+1 bằng 1 với n thuộc N*
Gọi d là ƯCLN(2n+1;3n+1) với d thuộc N
Ta có 2n+1 chia hết cho d=> 3(2n+1 ) chia hết cho d => 6n +3 chia hết cho d (1)
3n+1 chia hết cho d=> 2(3n+1) chia hết cho d => 6n+2 chia hết cho d (2)
Từ (1) và (2) suy ra (6n+3)-(6n+2) chia hết cho d
=> 1 chia hết cho d
=> d=1
Vậy ƯCLN của 2n+1 và 3n+1 là 1
Gọi d là ƯCLN của 2n+1 và 3n+1 (d thuộc N*). Do đó:
2n+1 chia hết cho d và 3n+1 chia hết cho d.
Vì 2n+1 chia hết cho d nên 3.(2n+1) chia hết cho d hay 6n+3 chia hết cho d
Vì 3n+1 chia hết cho d nên 2.(3n+1) chia hết cho d hay 6n+2 chia hết cho d nên:
(6n+3) - (6n+2) chia hết cho d
6n+3 - 6n - 2 chia hết cho d
1 chia hết cho d
suy ra d = 1
Vậy ƯCLN của 2n+1 và 3n+1 bằng 1