cho các tập hợp khác rỗng A=[m-3; 2m] và B=[4-m; 3m-1] với tham số thực m
1, tìm điều kiện của tham số m
2,c/m để AUB là một đoạn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để tập hợp A và B có nghĩa thì:
\(m-4\le1\Leftrightarrow m\le5\) (1)
\(m>-3\) (2)
Từ (1) và (2) \(\Rightarrow-3< m\le5\)
Mà: \(A\cup B=B\)
\(\Rightarrow A\subset B\)
\(\Rightarrow\left\{{}\begin{matrix}m-4>-3\\m\ge1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-3+4\\m\ge1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>1\\m\ge1\end{matrix}\right.\Leftrightarrow m>1\)
Mà: \(-3< m\le5\)
\(\Rightarrow1< m\le5\)
\(\Rightarrow m=\left\{2;3;4;5\right\}\)
Tổng là: có 4 giá trị m nguyên thỏa mãn
Để A ∪ B = A thì:
m - 5 < 2 và m + 1 ≥ 6
*) m - 5 < 2
⇔ m < 2 + 5
⇔ m < 7
*) m + 1 ≥ 6
⇔ m ≥ 6 - 1
⇔ m ≥ 5
Vậy 5 m < 7 thì A ∪ B = A
1) vì các tập hợp \(A;B\) khác tập rỗng \(\Rightarrow\left\{{}\begin{matrix}m-3\le2m\\4-m\le3m-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m\ge-3\\m\ge\dfrac{5}{4}\end{matrix}\right.\) \(\Rightarrow m\ge\dfrac{5}{4}\) vậy \(m\ge\dfrac{5}{4}\)
2) vì \(m\ge\dfrac{5}{4}\) \(\Rightarrow m-3< 3m-1\)
\(\Rightarrow A\cup B=\left[m-3;2m\right]\cup\left[4-m;3m-1\right]=\left[m-3;3m-1\right]\)
\(\Rightarrow\) (đpcm)