K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2017

Đáp án B

25 tháng 11 2023

Xét phương trình hoành độ giao điểm\(x^2\)+4x-m=0 <=> x^2+4x=m, đây là kết hợp của 2 hàm số (P):y=\(x^2\)+4x và (d):y=m.
Khi vẽ đồ thị ta thấy parabol đồng biến trên khoảng (-2;+∞)=> Điểm giao giữa parabol và đồ thị y=m là điểm duy nhất thỏa mãn phương trình có duy nhất 1 nghiệm thuộc khoảng (-3;1).Vậy để phương trình có 1 nghiệm duy nhất <=> delta=0 <=>16+4m=0<=>m=-4.

mình trình bày hơi dài mong bạn thông cảm loading...  

17 tháng 4 2019

6 tháng 5 2017

1 tháng 8 2018

Chọn B

Phương pháp:

Từ ycbt suy ra ta phải tìm m để hàm số có hai điểm cực trị dương hay phương trình y' = 0 có hai nghiệm dương phân biệt.

Ta sử dụng phương trình  có hai nghiệm dương phân biệt 

Cách giải:

Ta có 

 

Từ ycbt suy ra ta phải tìm m để hàm số có hai điểm cực trị dương hay phương trình y' = 0 có hai nghiệm dương phân biệt.

Khi đó 

Mà  nên có 2018 – 3 + 1 = 2016 giá trị m thỏa mãn.

17 tháng 1 2017

Ta có:  Δ = 4 m − 3 2 − 4.2. 1 − 2 m = 4 m − 1 2

2 x 2 + 2 x 2 − 4 m − 3 x 2 + 2 x + 1 − 2 m = 0 ⇔ x 2 + 2 x = 1 2    ( 1 ) x 2 + 2 x = 2 m − 1    ( 2 )

( 1 ) ⇔ x 2 + 2 x − 1 2 = 0 ⇔ x = − 2 + 6 2 ∉ − 3 ; 0 x = − 2 − 6 2 ∈ − 3 ; 0

2 ⇔ x + 1 2 = 2 m . Phương trình đã cho có đúng 1 nghiệm thuộc đoạn  - 3 ; 0  khi và chỉ khi phương trình (2) có nghiệm nhưng không thuộc đoạn  - 3 ; 0  hoặc vô nghiệm.

Xét (2), nếu  m < 0  thì (2) vô nghiệm (thỏa mãn yêu cầu).

+) Nếu  m = 0  thì (2) có nghiệm duy nhất  x = - 1 ∈ - 3 ; 0  (không thỏa yêu cầu).

+) Nếu  m > 0  thì (2) có hai nghiệm phân biệt x 1 = − 1 − 2 m < − 1 + 2 m = x 2 nên (2) có hai nghiệm không thuộc  - 3 ; 0  nếu

− 1 − 2 m < − 3 − 1 + 2 m > 0 ⇔ m > 2 m > 1 2 ⇔ m > 2

Vậy  m < 0 m > 2

Mà  m ∈ - 2019 ; 2019  và  m ∈ Z  nên  m ∈ - 2018 ; - 2017 ; . . . ; - 1 ; 3 ; 4 ; . . . ; 2018

Số các giá trị của m thỏa mãn bài toán là 2018 + 2016 = 4034.

Đáp án cần chọn là: D

31 tháng 12 2018

Đáp án A

Để hàm số đồng biến trên khoảng 2 ; + ∞ thì

Xét f x = 3 x 2 − 6 x + 5 12 x − 1 có đạo hàm  f ' x = 3 x 2 − 6 x + 1 12 x − 1 2 > 0 x > 2

Do đó f(x) đồng biến trên khoảng 2 ; + ∞  hay  M i n f x = f 2 = 5 12 ⇒ m < 5 12

Lại có m ∈ − 2017 ; 2017 m ∈ ℤ .

Suy ra có 2018 giá trị của m thỏa mãn

11 tháng 6 2017

Đáp án B.

8 tháng 11 2018

PT:  x 2 - 4 x - 5 - m = 0 ⇔ x 2 - 4 x - 5 = m 1

Số nghiệm phương trình (1) bằng số giao điểm của đồ thị hàm số 

y = x 2 - 4 x - 5 P  và đường thẳng y = m (cùng phương Ox)

Xét hàm số  y = x 2 - 4 x - 5 P 1  có đồ thị như hình 1.

 

Xét hàm số  y = x 2 - 4 x - 5 P 2  là hàm số chẵn nên có đồ thị nhận Oy làm trục đối xứng.

Mà  y = x 2 - 4 x - 5 = x 2 - 4 x - 5  nếu  x ≥ 0

Suy ra đồ thị hàm số  P 2  gồm hai phần:

Phần 1: Giữ nguyên đồ thị hàm số  P 1  phần bên phải Oy.

Phần 2: Lấy đối xứng phần 1 qua trục Oy.

Ta được đồ thị  P 2  như hình 2.

Xét hàm số  y = x 2 - 4 x - 5 P , ta có:  x 2 − 4 x − 5     ( y ≥ 0 ) − x 2 − 4 x − 5     ( y < 0 )

Suy ra đồ thị hàm số (P) gồm hai phần:

Phần 1: Giữ nguyên đồ thị hàm số  P 2  phần trên Ox.

Phần 2: Lấy đối xứng đồ thị hàm số  P 2  phần dưới Ox qua trục Ox.

Ta được đồ thị (P) như hình 3.

Quan sát đồ thị hàm số (P) ta có:

Phương trình |x2 – 4 |x| − 5| − m = 0 (1) có hai nghiệm phân biệt  ⇔ m > 9 m = 0

Mà  m ∈ Z m ∈ 0 ; 2017 ⇒ m ∈ 0 ; 10 ; 11 ; 12 ; . . . ; 2017

Vậy có 2009 giá trị nguyên của m thỏa mãn.

Đáp án cần chọn là: C