Viết phương trình đường thẳng đi qua hai điểm sau:
a) A 1;2 và B (-2;-1)
b) M 2;1 và(- 2; -7).
Bài 4 ) Tìm giao điểm của hai đường thẳng:
a) (d 1 ): 5x -2y = c và (d 2 ) : x + by = 2, biết rằng (d 1 ) đi qua điểm A(5;-1) và (d 2 ) đi qua điểm B(– 7; 3)
b) (d 1 ): ax + 2y = -3 và (d 2 ) : 3x -by = 5, biết rằng (d 1 ) đi qua điểm M(3;9) và (d 2 ) đi qua điểm N(– 1; 2)
Bài 5 )Cho tam giác vuông tại A (AB<AC) nối tiếp đường tròn (0) đường kính BC. Kẻ dây AD
vuông góc BC Gọi E là giao điểm của DB và AC. Qua E kẻ đường thẳng vuông góc với BC, cắt BC
tại H, cắt AB tại F.
a) Chứng minh tam giác EBF cân và tam giác HAF cân
b) Chứng minh: HA là tiếp tuyến của đường tròn (0)
Bài 6 )Từ điểm A ngoài đường tròn (O,R) với OA = 2R kẻ tiếp tuyến AB
a) Tính AB theo R
b) Kẻ dây BC vuông góc với OA tại H
Chứng minh: AC là tiếp tuyến của đường tròn (O)
a) CM: Bốn điểm A,B,O,C cùng thuộc một đường tròn, xác định tâm I của đường tròn đó.
b) Tia A0 cắt đường tròn (0) tại F (F I). Chứng minh BF là tiếp tuyến của đường tròn tâm I bán kính IBViết phương trình đường thẳng đi qua hai điểm sau:
a) A 1;2 và B 2; 1 .
b) M 2;1 và N2; 7 .
Bài 4 ) Tìm giao điểm của hai đường thẳng:
a) (d 1 ): 5x 2y = c và (d 2 ) : x + by = 2, biết rằng (d 1 ) đi qua điểm A(5;1) và (d 2 ) đi qua điểm B(– 7; 3)
b) (d 1 ): ax + 2y = 3 và (d 2 ) : 3x by = 5, biết rằng (d 1 ) đi qua điểm M(3;9) và (d 2 ) đi qua điểm N(– 1; 2)
Bài 5 )Cho tam giác vuông tại A (AB<AC) nối tiếp đường tròn (0) đường kính BC. Kẻ dây AD
vuông góc BC Gọi E là giao điểm của DB và AC. Qua E kẻ đường thẳng vuông góc với BC, cắt BC
tại H, cắt AB tại F.
a) Chứng minh tam giác EBF cân và tam giác HAF cân
b) Chứng minh: HA là tiếp tuyến của đường tròn (0)
Bài 6 )Từ điểm A ngoài đường tròn (O,R) với OA = 2R kẻ tiếp tuyến AB
a) Tính AB theo R
b) Kẻ dây BC vuông góc với OA tại H
Chứng minh: AC là tiếp tuyến của đường tròn (O)
a) CM: Bốn điểm A,B,O,C cùng thuộc một đường tròn, xác định tâm I của đường tròn đó.
b) Tia A0 cắt đường tròn (0) tại F (F I). Chứng minh BF là tiếp tuyến của đường tròn tâm I bán kính IB .
b) M 2;1 và N2; 7 .
Bài 4 ) Tìm giao điểm của hai đường thẳng:
a) (d 1 ): 5x 2y = c và (d 2 ) : x + by = 2, biết rằng (d 1 ) đi qua điểm A(5;1) và (d 2 ) đi qua điểm B(– 7; 3)
b) (d 1 ): ax + 2y = 3 và (d 2 ) : 3x by = 5, biết rằng (d 1 ) đi qua điểm M(3;9) và (d 2 ) đi qua điểm N(– 1; 2)
Bài 5 )Cho tam giác vuông tại A (AB<AC) nối tiếp đường tròn (0) đường kính BC. Kẻ dây AD
vuông góc BC Gọi E là giao điểm của DB và AC. Qua E kẻ đường thẳng vuông góc với BC, cắt BC
tại H, cắt AB tại F.
a) Chứng minh tam giác EBF cân và tam giác HAF cân
b) Chứng minh: HA là tiếp tuyến của đường tròn (0)
Bài 6 )Từ điểm A ngoài đường tròn (O,R) với OA = 2R kẻ tiếp tuyến AB
a) Tính AB theo R
b) Kẻ dây BC vuông góc với OA tại H
Chứng minh: AC là tiếp tuyến của đường tròn (O)
a) CM: Bốn điểm A,B,O,C cùng thuộc một đường tròn, xác định tâm I của đường tròn đó.
b) Tia A0 cắt đường tròn (0) tại F (F I). Chứng minh BF là tiếp tuyến của đường tròn tâm I bán kính IB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: vecto AB=(-1;6)
=>VTPT là (6;1)
Phương trình tham số là;
x=1-t và y=-2+6t
b: PTTQ là:
6(x-1)+1(y+2)=0
=>6x-6+y+2=0
=>6x+y-4=0
\(a,\) Gọi đt cần tìm là \(y=ax+b\)
\(\Leftrightarrow\left\{{}\begin{matrix}4a+b=-5\\a=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\Leftrightarrow y=-2x+3\)
\(b,\) Gọi đt cần tìm là \(y=ax+b\)
\(\Leftrightarrow\left\{{}\begin{matrix}8a+b=-1\\b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{4}\\b=1\end{matrix}\right.\Leftrightarrow y=-\dfrac{1}{4}x+1\)
\(c,\) Gọi đt đi qua M và N là \(y=ax+b\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2a+b=-3\\-6a+b=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=-2\end{matrix}\right.\Leftrightarrow y=\dfrac{1}{2}x-2\)
Thay \(x=1;y=1\Leftrightarrow1=\dfrac{1}{2}\cdot1-2\Leftrightarrow1=-\dfrac{1}{2}\left(\text{vô lí}\right)\)
\(\Leftrightarrow P\notinđths\)
Vậy 3 điểm này ko thẳng hàng
5:
Gọi (d): y=ax+b là phương trình cần tìm
Theo đề, ta có hệ:
3a+b=-1 và 2a+b=3
=>a=-4 và b=11
=>y=-4x+11
4:
vecto BC=(1;-1)
=>AH có VTPT là (1;-1)
Phương trình AH là:
1(x-1)+(-1)(y+3)=0
=>x-1-y-3=0
=>x-y-4=0
a.
\(\overrightarrow{AB}=\left(3;-4\right)\Rightarrow\) đường thẳng AB nhận (4;3) là 1 vtpt
Phương trình AB:
\(4\left(x-2\right)+3\left(y-5\right)=0\Leftrightarrow4x+3y-23=0\)b.
Do d vuông góc delta nên d nhận (4;-3) là 1 vtpt
Phương trình d có dạng: \(4x-3y+c=0\)
\(d\left(B;d\right)=\dfrac{\left|4.5-3.1+c\right|}{\sqrt{4^2+\left(-3\right)^2}}=\dfrac{1}{5}\)
\(\Rightarrow\left|c+17\right|=1\Rightarrow\left[{}\begin{matrix}c=-16\\c=-18\end{matrix}\right.\)
Có 2 đường thẳng d thỏa mãn: \(\left[{}\begin{matrix}4x-3y-16=0\\4x-3y-18=0\end{matrix}\right.\)
a) Phương trình đường tròn tâm A bán kính AB là \({\left( {x + 1} \right)^2} + {y^2} = 17\)
b) Ta có \(\overrightarrow {{u_{AB}}} = \overrightarrow {AB} = \left( {4;1} \right) \Rightarrow \overrightarrow {{n_{AB}}} = \left( {1; - 4} \right)\).
Phương trình AB là \(1\left( {x + 1} \right) - 4y = 0 \Leftrightarrow x - 4y + 1 = 0\).
c) Bán kính của đường tròn tâm O, tiếp xúc với đường thẳng AB là
\(R = d\left( {O,AB} \right) = \frac{{\left| {0 - 4.0 + 1} \right|}}{{\sqrt {{1^2} + {{\left( { - 4} \right)}^2}} }} = \frac{1}{{\sqrt {17} }}\)
Phương trình đường tròn tâm O tiếp xúc AB là \({x^2} + {y^2} = \frac{1}{{17}}\)
a: (Δ)//d nên Δ: -x+2y+c=0
=>VTPT là (-1;2)
=>VTCP là (2;1)
PTTS là:
x=3+2t và y=1+t
b: (d): -x+2y+1=0
=>Δ: 2x+y+c=0
Thay x=4 và y=-2 vào Δ, ta được:
c+8-2=0
=>c=-6
a: Gọi phương trình đường thẳng cần tìm là (d): y=ax+b(a<>0)
Vì (d)//y=3x+2 nên \(\left\{{}\begin{matrix}a=3\\b\ne2\end{matrix}\right.\)
Vậy: (d): y=3x+b
Thay x=1 và y=2 vào (d), ta được:
\(b+3\cdot1=2\)
=>b+3=2
=>b=-1
vậy: (d): y=3x-1
b: Gọi phương trình đường thẳng cần tìm là (d): y=ax+b(a<>0)
Vì (d) có tung độ gốc là 3 nên b=3
=>(d): y=ax+3
Thay x=-4 và y=7 vào (d), ta được:
\(-4a+3=7\)
=>-4a=4
=>a=-1
vậy: (d): y=-x+3
c: A(1;4); B(4;8)
=>\(AB=\sqrt{\left(4-1\right)^2+\left(8-4\right)^2}\)
=>\(AB=\sqrt{3^2+4^2}=\sqrt{25}=5\)
c: y=2x-6
=>2x-y-6=0
Khoảng cách từ A(-3;2) đến đường thẳng 2x-y-6=0 là;
\(d\left(A;2x-y-6=0\right)=\dfrac{\left|\left(-3\right)\cdot2+2\left(-1\right)-6\right|}{\sqrt{2^2+\left(-1\right)^2}}\)
\(=\dfrac{\left|-6-2-6\right|}{\sqrt{5}}=\dfrac{14}{\sqrt{5}}\)
Gọi phương trình đường thẳng cần tìm là (d1): y=ax+b\(\left(a\ne0\right)\)
Vì đường thẳng (d1) đi qua điểm A(2;-2)
nên Thay x=2 và y=-2 vào hàm số y=ax+b, ta được:
\(2a+b=-2\)
Vì đường thẳng (d1) đi qua điểm B(-1;3)
nên Thay x=-1 và y=3 vào hàm số y=ax+b, ta được:
\(-a+b=3\)
\(\Leftrightarrow-a=3-b\)
hay a=b-3
Thay a=b-3 vào biểu thức 2a+b=-2, ta được:
\(2\cdot\left(b-3\right)+b=-2\)
\(\Leftrightarrow2b-6+b=-2\)
\(\Leftrightarrow3b=-2+6=4\)
hay \(b=\dfrac{4}{3}\)
Thay \(b=\dfrac{4}{3}\) vào hàm số -a+b=3, ta được:
\(-a+\dfrac{4}{3}=3\)
\(\Leftrightarrow-a=3-\dfrac{4}{3}=\dfrac{5}{3}\)
hay \(a=-\dfrac{5}{3}\)
Vậy: Phương trình đường thẳng đi qua hai điểm A(2;-2) và B(-1;3) có dạng là \(y=-\dfrac{5}{3}x+\dfrac{4}{3}\)
mấy đấu kì lạ đều là dấu trừ