Cho hình thang ABCD. Điểm M, N trên AB sao cho AN = MN = NB; điểm Q,P trên DC sao cho DQ = QP = PC. Tính diện tích ABCD biết diện tích MNPQ là 32cm2. giúp mk vs ạ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
tam giác ADB có M là trung điểm của AD N là trung điểm của BD
=> MN là đường trung bình của tam giác ADB
=> MN//AB
mà AB//CD=> MN//CD (1)
tam giác DBC có N là trung điểm của BD , Q là trung điểm của BC
=> NQ là đường trung bình của tam giác
=> NQ//CD (2)
tam giác ADC có M là trung điểm của AD , P là trung điểm của AC
=> MP là đường trung bình
=> MP//CD (3)
từ (1),(2),(3)=> M,N,P,Q thẳng hàng
a: Xét ΔANM và ΔACB có
AN/AC=AM/AB
\(\widehat{NAM}=\widehat{CAB}\)
Do đó: ΔANM\(\sim\)ΔACB
Suy ra: \(\widehat{ANM}=\widehat{ACB}\)
hay MN//BC
Xét tứ giác MNBC có MN//BC
nên MNBC là hình thang
mà MB=NC
nên MNBC là hình thang cân
b: Xét tứ giác ABCD có \(\widehat{BAD}+\widehat{BCD}=180^0\)
nên ABCD là tứ giác nội tiếp
Xét đường tròn ngoại tiếp tứ giác ABCD có
\(\widehat{ADB}\) là góc nội tiếp chắn cung AB
\(\widehat{BDC}\) là góc nội tiếp chắn cung BC
mà \(sđ\stackrel\frown{AC}=sđ\stackrel\frown{BC}\)
nên \(\widehat{ADB}=\widehat{CDB}\)
hay DB là tia phân giác của góc ADC
Theo đầu bài cho trên tia AB nghĩa là lấy A làm gốc,lấy điểm M,N để AM=3cm,AN=6cm có thể suy ra M nằm giữa A,N.
MN=AN-AM=6-3=3cm
NB=AB-AN=8-6=2cm
vậy MN=3cm,NB=2cm
Theo phần đầu M nằm giữa A,N.mà AM=MN=3cm vậy M nằm giữa và cách đều A,N.Vậy M là trung điểm của AN
Ta có: (AB+DC):2 = MN ( đường trung bình của hình thang)
=> AB+DC = MN.2 = 3.2 =6
AB = 6 - DC = 6 - 4 =2
=> AB=2
a, Xét tam giác ADC có Q là trung điểm của AD và P là trung điểm của DC => QP là đường trung bình của tam giác ADC.=> QP//AC và QP=\(\dfrac{1}{2}\)AC (1)
Xét tam giác ABC có M là trung điểm của AB và N là trung điểm của BC => MN là đường trung bình của tam giác ABC => MN//AC và MN=\(\dfrac{1}{2}\)AC (2)
Từ (1) và (2) => QP=MN và QP//MN => MNPQ là hình bình hành
b,Nếu ABCD là hình thang cân <=> AC=BD (2 đường chéo) (3)
Xét tam giác BCD có N là trung điểm của BC và P là trung điểm của DC => NP là đương trung bình của tam giác BCD => NP//BD và NP=\(\dfrac{1}{2}\)BD (4)
=> Từ (1) (3) và (4) ta có QP=NP
=> ABCD là hình bình hành có QP=NP ( cạnh kề )
=> ABCD là hình thoi
BẠN TỰ VẼ HÌNH NHA