Cho z và w là các số phức thỏa mãn các điều kiện z w + 1 + i w - 1 = 0 ; w + 2 = 1 . Giá trị nhỏ nhất của biểu thức T = z - 1 - 3 i bằng
A. 2 2
B. 4 2
C. 3 2
D. 5 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Do đó điểm A biểu diễn số phức z thuộc đường tròn tâm I(-5;4) bán kính R = 5
Số phức w là số thuần ảo nên điểm B biểu diễn w thuộc trục tung
Ta có:
Đáp án C
giả sử
The giả thiết, ta có
Suy ra
Ta có
Vậy chọn phần ảo là – 1
\(z=x+yi\Rightarrow\left(x+1\right)^2+\left(y+1\right)^2=x^2+y^2\)
\(\Rightarrow x+y+1=0\Rightarrow\) tập hợp z là đường thẳng d: \(x+y+1=0\)
\(P=\left|\left(z-4-5i\right)-\left(w-3-4i\right)\right|\ge\left|\left|z-4-5i\right|-\left|w-3-4i\right|\right|=\left|\left|z-4-5i\right|-1\right|\)
Gọi M là điểm biểu diễn z và \(A\left(4;5\right)\Rightarrow\left|z-4-5i\right|=AM\)
\(AM_{min}=d\left(A;d\right)=\dfrac{\left|4+5+1\right|}{\sqrt{1^2+1^2}}=5\sqrt{2}\)
\(\Rightarrow P\ge\left|5\sqrt{2}-1\right|=5\sqrt{2}-1\)
Chọn B.
Vậy z = 2 - i và w = 1- iz + z = 1 - i( 2 - i) + 2 - i = 2 - 3i
Phần ảo của w là -3.