K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2020

Ta có hệ : \(\hept{\begin{cases}x^2+y^2=\frac{1}{2}\\\left(x+y\right)^3+\left(x-y\right)^3=1\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}2x^2+2y^2=1\\2x^3+6xy^2=1\end{cases}\Leftrightarrow}\hept{\begin{cases}2y^2=1-2x^2\left(1\right)\\2x^3+6xy^2=1\left(2\right)\end{cases}}\)

Dễ thấy \(y=0\) không là nghiệm nên thế (1) và (2) ta có : \(2x^3+3.x.\left(1-2x^2\right)=1\)

\(\Leftrightarrow4x^3-3x+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x-1\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{1}{2}\end{cases}}\)

+) Với \(x=-1\) thì ta có : \(\hept{\begin{cases}\left(-1\right)^2+y^2=\frac{1}{2}\\\left(-1+y\right)^3+\left(-1-y\right)^3=1\end{cases}}\) ( Vô nghiệm )

+) Với \(x=\frac{1}{2}\) thì ta có : \(\left(\frac{1}{2}\right)^2+y^2=\frac{1}{2}\Leftrightarrow y=\pm\frac{1}{2}\). Thỏa mãn hệ phương trình.

Vậy hệ pt có 2 nghiệm \(\left(x,y\right)=\left\{\left(\frac{1}{2};-\frac{1}{2}\right),\left(\frac{1}{2},\frac{1}{2}\right)\right\}\)

14 tháng 5 2021

`x-y=2<=>x=y+2` thay vào trên
`=>m(y+2)+2y=m+1`
`<=>y(m+2)=m+1-2m`
`<=>y(m+2)=1-2m`
Để hpt có nghiệm duy nhất
`=>m+2 ne 0<=>m ne -2`
`=>y=(1-2m)/(m+2)`
`=>x=y+2=5/(m+2)`
`xy=x+y+2`
`<=>(5-10m)/(m+2)=(6-2m)/(m+2)+2`
`<=>(5-10m)/(m+2)=10/(m+2)`
`<=>5-10m=10`
`<=>10m=-5`
`<=>m=-1/2(tm)`
Vậy `m=-1/2` thì HPT có nghiệm duy nhât `xy=x+y+2`

14 tháng 5 2021

`a)m=2`

$\begin{cases}2x+2y=3\\x-y=2\end{cases}$
`<=>` $\begin{cases}2x+2y=3\\2x-2y=4\end{cases}$
`<=>` $\begin{cases}4y=-1\\x=y+2\end{cases}$
`<=>` $\begin{cases}y=-\dfrac14\\y=\dfrac74\end{cases}$
Vậy m=2 thì `(x,y)=(7/4,-1/4)`

18 tháng 1 2021

Mình mạn phép sửa lại phương trình $2$ của bạn là $mx+3y=1$ nhé.

ĐK: $m\neq 0$

a) Khi $m=2,$ hệ phương trình là:

\(\left\{{}\begin{matrix}-4x+y=5\\2x+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4x+y=5\\4x+6y=2\end{matrix}\right.\Rightarrow7y=7\Leftrightarrow y=1\Rightarrow x=-1\)

b) \(\left\{{}\begin{matrix}-2mx+y=5\\mx+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2mx+y=5\\2mx+6y=2\end{matrix}\right.\Rightarrow7y=7\Leftrightarrow y=1\Rightarrow x=-\dfrac{2}{m}\)

c) Do ta luôn có $y=1$ là số dương nên chỉ cần chọn $m$ sao cho:

\(x=-\dfrac{2}{m}>0\Leftrightarrow m< 0\)

d) \(x^2+y^2=1\Leftrightarrow\left(-\dfrac{2}{m}\right)^2+1^2=1\Leftrightarrow\dfrac{4}{m^2}=0\) (vô lý)

Vậy không tồn tại $m$ sao cho $x^2+y^2=1.$

ĐKXĐ: x<>2 và y>=-1

\(\left\{{}\begin{matrix}\dfrac{1}{x-2}-2\sqrt{y+1}=-4\\\dfrac{2}{x-2}+\sqrt{y+1}=7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{2}{x-2}-4\sqrt{y+1}=-8\\\dfrac{2}{x-2}+\sqrt{y+1}=7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-5\sqrt{y+1}=-15\\\dfrac{2}{x-2}+\sqrt{y+1}=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{y+1}=3\\\dfrac{2}{x-2}=7-3=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y+1=9\\x-2=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=8\\x=\dfrac{5}{2}\end{matrix}\right.\left(nhận\right)\)

22 tháng 1

ai giải giúp mik ko, tự giải đi nè

NM
19 tháng 1 2021

a, tại m=2 thì hệ tương đương với\(\hept{\begin{cases}x+2y=2\\2x-y=2\end{cases}\Leftrightarrow\hept{\begin{cases}x+2y=2\\4x-2y=4\end{cases}\Leftrightarrow\hept{\begin{cases}x+2y=2\\5x=6\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{6}{5}\\y=\frac{2}{5}\end{cases}}}} }\)

b, do thay (x,y)=(2,-1) vào phương trình x+2y=2 không thỏa mãn nên hệ phương trình không nhận cặp (x,y)=(2,-1) là nghiệm

21 tháng 4 2021

Linh tinh đếyyy ạ. Có gì sai thông cảm nhaaaaundefined

AH
Akai Haruma
Giáo viên
29 tháng 4 2023

Bài 1: ĐKXĐ: $2\leq x\leq 4$
PT $\Leftrightarrow (\sqrt{x-2}+\sqrt{4-x})^2=2$

$\Leftrightarrow 2+2\sqrt{(x-2)(4-x)}=2$
$\Leftrightarrow (x-2)(4-x)=0$

$\Leftrightarrow x-2=0$ hoặc $4-x=0$

$\Leftrightarrow x=2$ hoặc $x=4$ (tm)

AH
Akai Haruma
Giáo viên
29 tháng 4 2023

Bài 2:
PT $\Leftrightarrow 4x^3(x-1)-3x^2(x-1)+6x(x-1)-4(x-1)=0$

$\Leftrightarrow (x-1)(4x^3-3x^2+6x-4)=0$
$\Leftrightarrow x=1$ hoặc $4x^3-3x^2+6x-4=0$

Với $4x^3-3x^2+6x-4=0(*)$

Đặt $x=t+\frac{1}{4}$ thì pt $(*)$ trở thành:
$4t^3+\frac{21}{4}t-\frac{21}{8}=0$

Đặt $t=m-\frac{7}{16m}$ thì pt trở thành:

$4m^3-\frac{343}{1024m^3}-\frac{21}{8}=0$
$\Leftrightarrow 4096m^6-2688m^3-343=0$

Coi đây là pt bậc 2 ẩn $m^3$ và giải ta thu được \(m=\frac{\sqrt[3]{49}}{4}\) hoặc \(m=\frac{-\sqrt[3]{7}}{4}\)

Khi đó ta thu được \(x=\frac{1}{4}(1-\sqrt[3]{7}+\sqrt[3]{49})\)

 

18 tháng 5 2021

1.      \(2x^2-3x-5=0\)

\(\Leftrightarrow\left(2x-5\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-5=0\\x+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2,5\\x=-1\end{cases}}\)

Vậy tập ngiệm của phương trình là \(S=\left\{2,5;-1\right\}\)

18 tháng 5 2021

2x2-3x-5=0

2x2+2x-5x-5=0

2x(x+1)+5(x+1)=0

(x+1)(2x+5)=0

TH1 x+1=0 <=>x=-1

TH2 2x+5=0<=>2x=-5<=>x=-5/2

2. ta có:

2(x-2y)-(2x+y)=-1.2-8

2x-4y-2x-y=-2-8

-5y=-10

y=2

thay vào 

x-2y=-1 ( với y=2)

<=> x-2.2=-1

x-4=-1

x=3

18 tháng 5 2021

3(2x+y)-2(3x-2y)=3.19-11.2

6x+3y-6x+4y=57-22

7y=35

y=5

thay vào :

2x+y=19

2x+5=19

2x=14

x=7

2/ x2+21x-1x-21=0

x(x+21)-1(x+21)=0

(x+21)(x-1)=0

TH1 x+21=0

x=-21

TH2 x-1=0

x=1

vậy x = {-21} ; {1}

3/ x4-16x2-4x2+64=0

x2(x2-16)-4(x2-16)=0

(x2-16)-(x2-4)=0

TH1 x2-16=0

x2=16

<=>x=4;-4

TH2 x2-4=0

x2=4

x=2;-2

18 tháng 5 2021

Bài 1 : 

\(\hept{\begin{cases}2x+y=19\\3x-2y=11\end{cases}\Leftrightarrow\hept{\begin{cases}4x+2y=38\\3x-2y=11\end{cases}\Leftrightarrow\hept{\begin{cases}7x=49\\2x+y=19\end{cases}}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=7\\2x+y=19\end{cases}}\)Thay vào x = 7 vào pt 2 ta được : 

\(14+y=19\Leftrightarrow y=5\)Vậy hệ pt có một nghiệm ( x ; y ) = ( 7 ; 5 )

Bài 2 : 

\(x^2+20x-21=0\)

\(\Delta=400-4\left(-21\right)=400+84=484\)

\(x_1=\frac{-20-22}{2}=-24;x_2=\frac{-20+22}{2}=1\)

Bài 3 : Đặt \(x^2=t\left(t\ge0\right)\)

\(t^2-20t+64=0\)

\(\Delta=400+4.64=656\)

\(t_1=\frac{20+4\sqrt{41}}{2}\left(tm\right);t_2=\frac{20-4\sqrt{41}}{2}\left(ktm\right)\)

Theo cách đặt : \(x^2=\frac{20+4\sqrt{41}}{2}\Rightarrow x=\sqrt{\frac{20+4\sqrt{41}}{2}}=\frac{\sqrt{20\sqrt{2}+4\sqrt{82}}}{2}\)

1 tháng 4 2022

a, bạn tự giải 

b, \(\left\{{}\begin{matrix}\left(m-1\right)y=m+1\\x=m-1+y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{m+1}{m-1}\\x=\dfrac{m^2-2m+1+m+1}{m-1}=\dfrac{m^2-m+2}{m-1}\end{matrix}\right.\)

Thay vào ta được \(\left(\dfrac{m^2-m+2}{m-1}\right)^2+\dfrac{2014\left(m+1\right)}{m-1}=2015\)

bạn ktra lại đề nhé