K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2017

Hình giải tích trong không gian

27 tháng 5 2017

\(\overrightarrow{m}=\left(-4;-2;3\right);\overrightarrow{n}=\left(-9;2;1\right)\)

27 tháng 4 2017

Hỏi đáp Toán

31 tháng 3 2017

Giải bài 2 trang 120 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 2 trang 120 sgk Hình học 11 | Để học tốt Toán 11

Thỏa mãn :

- Giá của 3 vector đều song song với mặt phẳng (P) nên chúng đồng phẳng

- Khi ba vectơ có giá của chúng cùng song song với một mặt phẳng

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

Áp dụng quy tắc hình bình hành ta có \(\overrightarrow {OA}  = \overrightarrow {O{A_1}}  + \overrightarrow {O{A_2}} \)

Dựa vào hình vẽ ta thấy \({\overrightarrow {OA} _1} = 3\overrightarrow i \) và \({\overrightarrow {OA} _2} = 2\overrightarrow j \)

Vậy \(\overrightarrow a  = \overrightarrow {OA}  = \overrightarrow {O{A_1}}  + \overrightarrow {O{A_2}}  = 3\overrightarrow i  + 2\overrightarrow j \)

24 tháng 9 2023

Tham khảo:

a) Trên mặt phẳng tọa độ, lấy các điểm A, B, C sao cho \(\overrightarrow {OA}  = \overrightarrow a ;\;\overrightarrow {OB}  = \overrightarrow b ;\;\overrightarrow {OC}  = \overrightarrow u \)

Trên hệ trục Oxy với các vectơ đơn vị \(\overrightarrow i  = \overrightarrow a ,\;\overrightarrow j  = \overrightarrow b \), lấy M, N là hình chiếu của C trên Ox, Oy.

Gọi tọa độ của \(\overrightarrow u \)là \(\left( {x;y} \right)\). Đặt \(\alpha  = \left( {\overrightarrow u ,\overrightarrow a } \right)\).

+) Nếu \({0^o} < \alpha  < {90^o}\): \(x = OM = \;|\overrightarrow u |.\cos \alpha  = \;|\overrightarrow u |.\cos \alpha .\;|\overrightarrow a |\; = \overrightarrow u \,.\,\overrightarrow a \,;\)

 

+) Nếu \({90^o} < \alpha  < {180^o}\): \(x =  - OM = \; - |\overrightarrow u |.\cos ({180^o} - \alpha ) = \;|\overrightarrow u |.\cos \alpha \; = \overrightarrow u \,.\,\overrightarrow a \,;\)

 

Như vậy ta luôn có: \(x = \overrightarrow u .\overrightarrow a \)

Chứng minh tương tự, ta có: \(y = \overrightarrow u .\overrightarrow b \)

Vậy vectơ \(\overrightarrow u \) có tọa độ là \((\overrightarrow u \,.\,\overrightarrow a \,;\,\overrightarrow u \,.\,\overrightarrow b )\)

b) Trong hệ trục Oxy với các vectơ vectơ đơn vị \(\overrightarrow i  = \overrightarrow a ,\;\overrightarrow j  = \overrightarrow b \), vectơ \(\overrightarrow u \) có tọa độ là \((\overrightarrow u \,.\,\overrightarrow a \,;\,\overrightarrow u \,.\,\overrightarrow b )\)

\(\begin{array}{l} \Rightarrow \overrightarrow u  = (\overrightarrow u \,.\,\overrightarrow a \,).\overrightarrow i  + (\,\overrightarrow u \,.\,\overrightarrow b ).\overrightarrow j \\ \Leftrightarrow \overrightarrow u  = (\overrightarrow u \,.\,\overrightarrow a \,).\overrightarrow a  + (\,\overrightarrow u \,.\,\overrightarrow b ).\overrightarrow b \end{array}\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Ta có: \(AB = BC = CD = DA = 1;\)

            \(AC = BD = \sqrt {A{B^2} + B{C^2}}  = \sqrt {{1^2} + {1^2}}  = \sqrt 2 \)

a) \(\overrightarrow a  = \overrightarrow {OB}  - \overrightarrow {OD}  = \overrightarrow {OB}  + \overrightarrow {DO}  = \left( {\overrightarrow {DO}  + \overrightarrow {OB} } \right) = \overrightarrow {DB} \)

\( \Rightarrow \left| {\overrightarrow a } \right| = \left| {\overrightarrow {DB} } \right| = DB = \sqrt 2 \)

b)  \(\overrightarrow b = \left( {\overrightarrow {OC}  - \overrightarrow {OA} } \right) + \left( {\overrightarrow {DB}  - \overrightarrow {DC} } \right)\)

   \( = \left( {\overrightarrow {OC}  + \overrightarrow {AO} } \right) + \left( {\overrightarrow {DB}  + \overrightarrow {CD} } \right) = \left( {\overrightarrow {AO}  + \overrightarrow {OC} } \right) + \left( {\overrightarrow {CD}  + \overrightarrow {DB} } \right)\)

   \( = \overrightarrow {AC}  + \overrightarrow {CB}  = \overrightarrow {AB} \)

\( \Rightarrow \left| {\overrightarrow b } \right| = \left| {\overrightarrow {AB} } \right| = AB = 1\)

Chú ý khi giải:

Khi có dấu trừ phía trước ta thường thay bằng vectơ đối của nó và ngược lại

27 tháng 5 2017

Hình giải tích trong không gian

Hình giải tích trong không gian

AH
Akai Haruma
Giáo viên
15 tháng 8 2021

Lời giải:
Xét hai vecto bất kỳ  \(\overrightarrow{AB}, \overrightarrow{CD}\). Kẻ vecto $\overrightarrow{CT}$ sao cho $\overrightarrow{CT}=\overrightarrow{BA}$

Ta có:

\(|\overrightarrow{AB}+\overrightarrow{CD}|=|\overrightarrow{TC}+\overrightarrow{CD}|=|\overrightarrow{TD}|\)

\(|\overrightarrow{AB}|+|\overrightarrow{CD}|=|\overrightarrow{TC}|+|\overrightarrow{CD}|\)

Mà theo bđt tam giác thì:

\(|\overrightarrow{TC}+\overrightarrow{CD}|\geq |\overrightarrow{TD}|\Rightarrow |\overrightarrow{AB}|+\overrightarrow{CD}|\geq |\overrightarrow{AB}+\overrightarrow{CD}|\)

Dấu "=" xảy ra khi \(T, C,D\) thẳng hàng và $C$ nằm giữa $T,D$

$\Leftrightarrow \overrightarrow{TC}, \overrightarrow{CD}$ cùng hướng 

$\Leftrightarrow \overrightarrow{AB}, \overrightarrow{CD}$ cùng hướng

Vậy với $\overrightarrow{a}, \overrightarrow{b}$ bất kỳ thì $|\overrightarrow{a}|+|\overrightarrow{b}|\geq |\overrightarrow{a}+\overrightarrow{b}|$. Dấu "=" xảy ra khi $\overrightarrow{a}, \overrightarrow{b}$ cùng hướng.

------------------

Áp dụng vào bài toán:

\(|\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}|\leq |\overrightarrow{a}+\overrightarrow{b}|+|\overrightarrow{c}|\leq |\overrightarrow{a}|+|\overrightarrow{b}|+|\overrightarrow{c}|\)

Dấu "=" xảy ra khi \(\overrightarrow{a}, \overrightarrow{b}\) cùng hướng và \(\overrightarrow{a}+\overrightarrow{b}, \overrightarrow{c}\) cùng hướng 

\(\Leftrightarrow \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}\) cùng hướng 

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Do các vectơ đều nằm trên đường thẳng AB nên các vectơ này đều cùng phương với nhau.

Dễ thấy:

Các vectơ \(\overrightarrow {AB} ,\overrightarrow {AC} ,\overrightarrow {BC} \) cùng hướng (từ trái sang phải.)

Các vectơ \(\overrightarrow {BA} ,\overrightarrow {CA} ,\overrightarrow {CB} \) cùng hướng (từ phải sang trái.)

Do đó, các cặp vectơ cùng hướng là:

\(\overrightarrow {AB} \) và \(\overrightarrow {AC} \); \(\overrightarrow {AC} \) và \(\overrightarrow {BC} \); \(\overrightarrow {AB} \) và \(\overrightarrow {BC} \); \(\overrightarrow {BA} \) và \(\overrightarrow {CA} \);  \(\overrightarrow {BA} \) và \(\overrightarrow {CB} \);\(\overrightarrow {BA} \) và \(\overrightarrow {CB} \).

Các cặp vectơ ngược hướng là:

\(\overrightarrow {AB} \) và \(\overrightarrow {BA} \); \(\overrightarrow {AB} \) và \(\overrightarrow {CA} \); \(\overrightarrow {AB} \) và \(\overrightarrow {CB} \);

\(\overrightarrow {AC} \) và \(\overrightarrow {BA} \); \(\overrightarrow {AC} \) và \(\overrightarrow {CA} \); \(\overrightarrow {AC} \) và \(\overrightarrow {CB} \);

\(\overrightarrow {BC} \) và \(\overrightarrow {BA} \); \(\overrightarrow {BC} \) và \(\overrightarrow {CA} \); \(\overrightarrow {BC} \) và \(\overrightarrow {CB} \);