K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2017

a) cos(; ) = = 0

=> (; ) = 900

b) cos(; ) = =

=> (; ) = 450

c) cos(; ) = =

=> (; ) = 1500

Đăng những câu khác đi em mỏi tay rồi

30 tháng 3 2017

kéo thả chuột mà cũng kêu mỏi ?

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) 

\(\overrightarrow a .\overrightarrow b  = ( - 3).2 + 1.6 = 0\)

\( \Rightarrow \overrightarrow a  \bot \overrightarrow b \) hay \(\left( {\overrightarrow a ,\overrightarrow b } \right) = {90^o}\).

b)

\(\left\{ \begin{array}{l}\overrightarrow a .\overrightarrow b  = 3.2 + 1.4 = 10\\|\overrightarrow a |\, = \sqrt {{3^2} + {1^2}}  = \sqrt {10} ;\;\,|\overrightarrow b |\, = \sqrt {{2^2} + {4^2}}  = 2\sqrt 5 \end{array} \right.\)

\(\begin{array}{l} \Rightarrow \cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{10}}{{\sqrt {10} .2\sqrt 5 }} = \frac{{\sqrt 2 }}{2}\\ \Rightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = {45^o}\end{array}\)

c) Dễ thấy: \(\overrightarrow a \) và \(\overrightarrow b \) cùng phương do \(\frac{{ - \sqrt 2 }}{2} = \frac{1}{{ - \sqrt 2 }}\)

Hơn nữa: \(\overrightarrow b  = \left( {2; - \sqrt 2 } \right) =  - \sqrt 2 .\left( { - \sqrt 2 ;1} \right) =  - \sqrt 2 .\overrightarrow a \;\); \( - \sqrt 2  < 0\)

Do đó: \(\overrightarrow a \) và \(\overrightarrow b \) ngược hướng.

\( \Rightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = {180^o}\)

Chú ý:

Khi tính góc, ta kiểm tra các trường hợp dưới đây trước:

+  \(\left( {\overrightarrow a ,\overrightarrow b } \right) = {90^o}\): nếu \(\overrightarrow a .\overrightarrow b  = 0\)

+ \(\overrightarrow a \) và \(\overrightarrow b \) cùng phương: 

\(\left( {\overrightarrow a ,\overrightarrow b } \right) = {0^o}\) nếu \(\overrightarrow a \) và \(\overrightarrow b \) cùng hướng

\(\left( {\overrightarrow a ,\overrightarrow b } \right) = {180^o}\) nếu \(\overrightarrow a \) và \(\overrightarrow b \) ngược hướng

Nếu không thuộc các trường hợp trên thì ta tính góc dựa vào công thức \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}}\).

24 tháng 9 2023

Tham khảo:

a) Ta có: \(\overrightarrow b  = \left( {4; - 1} \right)\) và \(\overrightarrow a  = 3.\overrightarrow i  - 2.\overrightarrow j \;\; \Rightarrow \;\overrightarrow a \;\left( {3; - 2} \right)\)

\( \Rightarrow 2\;\overrightarrow a  - \overrightarrow b  = \left( {2.3 - 4\;;\;2.\left( { - 2} \right) - \left( { - 1} \right)} \right) = \left( {2; - 3} \right)\)

Lại có: M (-3; 6), N(3; -3)

\( \Rightarrow \overrightarrow {MN}  = \left( {3 - \left( { - 3} \right); - 3 - 6} \right) = \left( {6; - 9} \right)\)

Dễ thấy:\(\left( {6; - 9} \right) = 3.\left( {2; - 3} \right)\) \( \Rightarrow \overrightarrow {MN}  = 3\left( {2\;\overrightarrow a  - \overrightarrow b } \right)\)

b) Ta có: \(\overrightarrow {OM}  = \left( { - 3;6} \right)\) ( do M(-3; 6)) và \(\overrightarrow {ON}  = \left( {3; - 3} \right)\) (do N (3; -3)).

Hai vectơ này không cùng phương (vì \(\frac{{ - 3}}{3} \ne \frac{6}{{ - 3}}\)).

Do đó các điểm O, M, N không cùng nằm trên một đường thẳng.

Vậy chúng không thẳng hàng.

c) Các điểm O, M, N không thẳng hàng nên OMNP là một hình hành khi và chỉ khi \(\overrightarrow {OM}  = \overrightarrow {PN} \).

Do \(\overrightarrow {OM}  = \left( { - 3;6} \right),\;\overrightarrow {PN}  = \left( {3 - x; - 3 - y} \right)\)  nên

\(\overrightarrow {OM}  = \overrightarrow {PN}  \Leftrightarrow \left\{ \begin{array}{l} - 3 = 3 - x\\6 =  - 3 - y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 6\\y =  - 9\end{array} \right.\)

Vậy điểm cần tìm là P (6; -9).

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}} = \frac{{2.6 + ( - 3).4}}{{\sqrt {{2^2} + {{\left( { - 3} \right)}^2}} .\sqrt {{6^2} + {4^2}} }} = 0 \Rightarrow \overrightarrow a  \bot \overrightarrow b \)

b) \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}} = \frac{{3.5 + 2.( - 1)}}{{\sqrt {{3^2} + {2^2}} .\sqrt {{5^2} + {{\left( { - 1} \right)}^2}} }} = \frac{{\sqrt 2 }}{2} \Rightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = 45^\circ \)

c) \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}} = \frac{{\left( { - 2} \right).3 + ( - 2\sqrt 3 ).\sqrt 3 }}{{\sqrt {{{\left( { - 2} \right)}^2} + {{\left( { - 2\sqrt 3 } \right)}^2}} .\sqrt {{3^2} + {{\sqrt 3 }^2}} }} =  - \frac{{\sqrt 3 }}{2} \Rightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = 150^\circ \)

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Do \(\overrightarrow u  = \left( {{x_1},{y_1}} \right)\), \(\overrightarrow v  = \left( {{x_2},{y_2}} \right)\) nên \(\overrightarrow u  = {x_1}\overrightarrow i  + {y_1}\overrightarrow j .\), \(\overrightarrow v  = {x_2}\overrightarrow i  + {y_2}\overrightarrow j .\)

b) +) \(\overrightarrow u  + \overrightarrow v  = \left( {{x_1}\overrightarrow i  + {y_1}\overrightarrow j } \right) + \left( {{x_2}\overrightarrow i  + {y_2}\overrightarrow j } \right) = \left( {{x_1}\overrightarrow i  + {x_2}\overrightarrow i } \right) + \left( {{y_1}\overrightarrow j  + {y_2}\overrightarrow j } \right) = \left( {{x_1} + {x_2}} \right)\overrightarrow i  + \left( {{y_1} + {y_2}} \right)\overrightarrow j \)

+) \(\overrightarrow u  - \overrightarrow v  = \left( {{x_1}\overrightarrow i  + {y_1}\overrightarrow j } \right) - \left( {{x_2}\overrightarrow i  + {y_2}\overrightarrow j } \right) = \left( {{x_1}\overrightarrow i  - {x_2}\overrightarrow i } \right) + \left( {{y_1}\overrightarrow j  - {y_2}\overrightarrow j } \right) = \left( {{x_1} - {x_2}} \right)\overrightarrow i  + \left( {{y_1} - {y_2}} \right)\overrightarrow j \)

+) \(k\overrightarrow u  = \left( {k{x_1}} \right)\overrightarrow i  + \left( {k{y_1}} \right)\overrightarrow j \)

c) Tọa độ của các vectơ \(\overrightarrow u  + \overrightarrow v \),\(\overrightarrow u  - \overrightarrow v \),\(k\overrightarrow u \left( {k \in \mathbb{R}} \right)\)lần lượt là:

\(\left( {{x_1} + {x_2};{y_1} + {y_2}} \right),\left( {{x_1} - {x_2};{y_1} - {y_2}} \right),\left( {k{x_1},k{y_1}} \right)\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Ta có:  \(\overrightarrow {AB}  = (3 - 1;4 - 2) = (2;2)\) và \(\overrightarrow {CD}  = (6 - ( - 1);5 - ( - 2)) = (7;7)\)

b) Dễ thấy: \((2;2) = \frac{2}{7}.(7;7)\)\( \Rightarrow \overrightarrow {AB}  = \frac{2}{7}.\overrightarrow {CD} \)

Vậy hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \) cùng phương.

c) Ta có: \(\overrightarrow {AC}  = ( - 1 - 1; - 2 - 2) = ( - 2; - 4)\) và \(\overrightarrow {BE}  = (a - 3;1 - 4) = (a - 3; - 3)\)

Để \(\overrightarrow {AC} \) và \(\overrightarrow {BE} \) cùng phương thì \(\frac{{a - 3}}{{ - 2}} = \frac{{ - 3}}{{ - 4}}\)\( \Leftrightarrow a - 3 =  - \frac{3}{2}\)\( \Leftrightarrow a = \frac{3}{2}\)

Vậy \(a = \frac{3}{2}\) hay \(E\left( {\frac{3}{2};1} \right)\) thì hai vectơ \(\overrightarrow {AC} \) và \(\overrightarrow {BE} \) cùng phương

d)

Cách 1:

Ta có: \(\overrightarrow {BE}  = \left( {\frac{3}{2} - 3; - 3} \right) = \left( { - \frac{3}{2}; - 3} \right)\) ; \(\overrightarrow {AC}  = ( - 2; - 4)\)

\( \Rightarrow \overrightarrow {BE}  = \frac{3}{4}.\overrightarrow {AC} \)

Mà \(\overrightarrow {AE}  = \overrightarrow {AB}  + \overrightarrow {BE} \) (quy tắc cộng)

\( \Rightarrow \overrightarrow {AE}  = \overrightarrow {AB}  + \frac{3}{4}.\overrightarrow {AC} \)

Cách 2:

Giả sử \(\overrightarrow {AE}  = m\,.\,\overrightarrow {AB}  + n\,.\,\overrightarrow {AC} \)(*)

Ta có:  \(\overrightarrow {AE}  = \left( {\frac{1}{2}; - 1} \right)\), \(m\,.\,\overrightarrow {AB}  = m\left( {2;2} \right) = (2m;2m)\), \(n\,.\,\overrightarrow {AC}  = n( - 2; - 4) = ( - 2n; - 4n)\)

Do đó (*) \( \Leftrightarrow \left( {\frac{1}{2}; - 1} \right) = (2m;2m) + ( - 2n; - 4n)\)

\(\begin{array}{l} \Leftrightarrow \left( {\frac{1}{2}; - 1} \right) = (2m - 2n;2m - 4n)\\ \Leftrightarrow \left\{ \begin{array}{l}\frac{1}{2} = 2m - 2n\\ - 1 = 2m - 4n\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = 1\\n = \frac{3}{4}\end{array} \right.\end{array}\)

Vậy \(\overrightarrow {AE}  = \overrightarrow {AB}  + \frac{3}{4}.\overrightarrow {AC} \)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Ta có: \(\overrightarrow u  = (2; - 3)\)

\( \Rightarrow \overrightarrow u  = 2.\;\overrightarrow i  + \left( { - 3} \right).\;\overrightarrow j \)

Tương tự ta có: \(\overrightarrow v  = (4;1),\;\overrightarrow a  = (8; - 12)\)

\( \Rightarrow \overrightarrow v  = 4.\;\overrightarrow i  + 1.\;\overrightarrow j ;\;\;\overrightarrow a  = 8.\;\overrightarrow i  + \left( { - 12} \right).\;\overrightarrow j \)

b) Ta có: \(\left\{ \begin{array}{l}\overrightarrow u  = 2.\;\overrightarrow i  + \left( { - 3} \right).\;\overrightarrow j \\\overrightarrow v  = 4.\;\overrightarrow i  + 1.\;\overrightarrow j \end{array} \right.\)(theo câu a)

\(\begin{array}{l} \Rightarrow \left\{ \begin{array}{l}\overrightarrow u  + \;\overrightarrow v  = \left( {2.\;\overrightarrow i  + \left( { - 3} \right).\;\overrightarrow j } \right) + \left( {4.\;\overrightarrow i  + 1.\;\overrightarrow j } \right)\\4.\;\overrightarrow u  = 4\left( {2.\;\overrightarrow i  + \left( { - 3} \right).\;\overrightarrow j } \right)\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow u  + \;\overrightarrow v  = \left( {2.\;\overrightarrow i  + 4.\;\overrightarrow i } \right) + \left( {\left( { - 3} \right).\;\overrightarrow j  + 1.\;\overrightarrow j } \right)\\4.\;\overrightarrow u  = 4.2.\;\overrightarrow i  + 4.\left( { - 3} \right).\;\overrightarrow j \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow u  + \;\overrightarrow v  = 6.\;\overrightarrow i  + \left( { - 2} \right).\;\overrightarrow j \\4.\;\overrightarrow u  = 8.\;\overrightarrow i  + \left( { - 12} \right).\;\overrightarrow j \end{array} \right.\end{array}\)

c) Vì \(\left\{ \begin{array}{l}4.\;\overrightarrow u  = 8.\;\overrightarrow i  + \left( { - 12} \right).\;\overrightarrow j \\\overrightarrow a  = 8.\;\overrightarrow i  + \left( { - 12} \right).\;\overrightarrow j \end{array} \right.\) nên ta suy ra \(4.\;\overrightarrow u  = \overrightarrow a \)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Ta có \(\overrightarrow n .\overrightarrow u  = a.b + b.( - a) = 0\)

Tích vô hướng bằng 0 nên hai vectơ \(\overrightarrow n ,\overrightarrow u \)có phương vuông góc với nhau

b) Vectơ \(\overrightarrow {{M_0}M} \) có giá là đường thẳng \(\Delta\)

=> luôn cùng phương với vectơ \(\overrightarrow u \)

=> vectơ \(\overrightarrow {{M_0}M} \) có phương vuông góc với vectơ \(\overrightarrow n \)

30 tháng 3 2017

\(\overrightarrow{a}\) . \(\overrightarrow{b}\) = ( -3) . 2 + 1.2 = -4

30 tháng 3 2017

Giải bài 4 trang 62 sgk Hình học 10 | Để học tốt Toán 10