a) Cho tam giác ABC. Gọi D, E lần lượt là các điểm thỏa mãn: \(\overrightarrow{BD}=\dfrac{2}{3}\overrightarrow{BC};\overrightarrow{AE}=\dfrac{1}{4}\overrightarrow{AC}.\)Tìm vị trí của điểm K trên AD sao cho 3 điểm B, K, E thằng hàng.
b) Cho tam giác ABC vuông tại A; BC = a; CA = b; AB = c. Xác định điểm I thỏa mãn hệ thức: \(\left(b^2MB^2+c^2MC^2-2a^2MA^2\right)\) đạt giá trị lớn nhất.