Cho hàm số \(f\left(x\right)=\left\{{}\begin{matrix}3x+2;\left(x< -1\right)\\x^2-1;\left(x\ge-1\right)\end{matrix}\right.\)
a) Vẽ đồ thị hàm số \(y=f\left(x\right)\). Từ đó nêu nhận xét về tính liên tục của hàm số trên tập xác định của nó ?
b) Khẳng định nhận xét trên bằng một chứng minh ?
a) Các bạn tự vẽ hình nhé . Đồ thị hàm số y = f(x) là một đường không liền nét mà bị đứt quãng tại x0 = -1. Vậy hàm số đã cho liên tục trên khoảng (-∞; -1) và (- 1; +∞).
b) +) Nếu x < -1: f(x) = 3x + 2 liên tục trên (-∞; -1) (vì đây là hàm đa thức).
+) Nếu x> -1: f(x) = x2 – 1 liên tục trên (-1; +∞) (vì đây là hàm đa thức).
+) Tại x = -1;
Ta có == 3(-1) +2 = -1.
= (-1)2 – 1 = 0.
Vì nên không tồn tại . Vậy hàm số gián đoạn tại
x0 = -1.